Sequence 1 : Introduction to mathematical programming using GAMS

Unit 1.1 : Constrained optimization

Lesson 1 : An initial example

Florence Jacquet

ModelEco

F(X) linear \rightarrow linear programming F(X) non-linear \rightarrow mathematical programming

Linear programming : Commonly used in the industrial sector e.g. the animal feed industry

Introduction

What is the optimal composition that meets the expected contents while minimizing production costs ?

Introduction

What quantity of chairs and tables must be produced in order to maximize the company income ?

A cereal farm

A given farmer has land and labour and can grow both wheat and maize. The optimal area dedicated to wheat and maize cultivation must be determined, knowing that :

 $_{\circ}$ The objective of the farmer is to maximize his net income (or gross margin)

- ₀ Wheat yields 450€ and maize 1000€ per ha
- $_{\circ}\,$ Wheat requires 25h of labour and maize 50h per ha

 $_{\circ}\,$ The total farm area is 50 ha and the farmer can only work 2000 h a year

Pause the video and try to formulate this problem, then resume the video and watch the solution

General formulation, algebraic writing

where	Z X.	value of the objective function level of activity or decision variables	where	Z farm income (euros)
	<i>C_j</i>	<i>c</i> _j economic returns for each activity <i>n</i> _{ij} matrix of technical coefficients <i>i</i> resource availability		X ₁ area dedicated to wheat (ha)
	b_i			X_2 area dedicated to maize (ha) \swarrow

Mathematical formulation

- 1. Identifying and naming the variables
- 2. Writing the constraints
- 3. Writing the objective function

Z farm income (euros) X_1 area dedicated to wheat (ha) \approx X_2 area dedicated to maize (ha)

Maximize $Z = 450 X_1 + 1000 X_2 (\epsilon)$

Subject to
$$X_1 + X_2 \le 50$$
 (ha)
 $25 X_1 + 50 X_2 \le 2000$ (hours)
 $X_1 \ge 0$; $X_2 \ge 0$

General formulation, matrix writing

、50) 2000

In our example

Maximiser Z = c X

X vector composed of 2 elements $(x_1 \quad x_2)$

c economic yields vector

b availability vector

A matrix of technical coefficients

where X is the vector of x_j C is the vector of c_j A is the matrix of a_{ij} B is the vector of b_j

$$A X \le B \Leftrightarrow \begin{pmatrix} 1 & 1 \\ 25 & 50 \end{pmatrix} * \begin{pmatrix} x_1 & x_2 \end{pmatrix} \le \begin{pmatrix} 50 \\ 2000 \end{pmatrix} \Leftrightarrow \frac{x_1 + x_2 \le 50}{25x_1 + 50x_2 \le 2000}$$

1000)

(450

 $\begin{pmatrix} 1 & 1 \\ 25 & 50 \end{pmatrix}$