Sequence 1 : Introduction to mathematical programming using GAMS

Unit 1.3 : Primal problem, dual problem

Lesson 9 : What are dual values ?

Florence Jacquet

ModelEco

Marginal values

Initial Model

Solution A : $X_1=0$; $X_2=40$ Income : 40 000 The labour constraint is binding The marginal value of labour is 20

Simulation of an increase by one hour of labour

Simulation of an increase by one hectare of land

ModelEco

In short...

> Every binding constraint is associated with a dual value of the resource in question.

> The dual values of non-binding constraints are equal to zero.

General formulation of a dual problem

c' transposed from c

Primal problem	Dual problem	
Max $Z = c x$ (1,n) (n,1)	$ \begin{array}{lll} Min & Z = b' \ y \\ & (1,m) \ (m,1) \end{array} \\ With & A' \ y \leq c' \\ & (n,m) \ (m,1) \ (n,1) \\ & y \geq 0 \\ & (m,l) \end{array} $	
	A' transposed from A b' transposed from b	

$$cx^*=b'y^*$$

Application at farm level 🦄

	Primal problem		Dual problem	
Max subject to	$Z = 450 X_1 + 1000 X_2$ $X_1 + X_2 \le 50$ $25 X_1 + 50 X_2 \le 2000$ $X_1 \ge 0 ; X_2 \ge 0$	Miı subject to	$Z = 50Y_1 + 2000Y_2$ $Y_1 + 25Y_2 \ge 450$ $Y_1 + 50Y_2 \ge 1000$ $Y_1 \ge 0; Y_2 \ge 0$	Dual values = Opportunity costs = Implicit values = « shadow prices »

x1 : area dedicated to wheat (h x2 : area dedicated to maize (ha

*x1**=0; *x2**=40; *Z*=40000

 y_1 : land opportunity cost (\in) y_2 : labour opportunity cost (\in)

 $y_1^*=0; y_2^*=20; y_3^*=0; Z=40000$

ModelEco

Economic interpretations

Primal problem

Maximization of an income under availability and resource constraints

> → Calculates the quantities/areas for each activity

Dual problem

Minimization of the total cost of resources under the constraint of their contribution to the income of productions

 \rightarrow Calculates the prices for each resource

