Sequence 2 : The farm model

Unit 2.3 : Simulating a public policy

Lesson 19 : The CAP and the agrienvironment

Sophie Thoyer

ModelEco

CAP and the environment

Initial objectives of the CAP :

- > to modernize European agriculture
- > to increase labour and land productivity
- > to improve the income of farmers

- Guaranteed-high-prices policy
- > Intensification of practices via the use of chemical inputs
- > Encouraging farm restructuring and expansion
- Farm specialization

- > Water and soil pollution
- Loss of biodiversity
- Overexploitation of water resources

Regulations

How is it possible to revert to more environmentally-friendly production systems and practices ?

Regulations
Imposing stricter rules

The rules can concern :

- Forbidden products or practices
- Compulsory practices
- They may be applicable everywhere or only on vulnerable territories

How is it possible to revert to more environmentally-friendly production systems and practices ?

Subsidies

→ e.g. : Agro-environment-climate measures (AECM)

Compensate farmers who opt for more environmentally-friendly practices, which can be more costly or cause yield losses

Subsidies – Example

How is it possible to revert to more environmentally-friendly production systems and practices ?

□ Taxes

Taxing farmers who cause environmental damage (polluter pays principle)

price + tax

But agricultural pollution comes from many diffuse sources

Alternative : Taxing polluting products in order to make them more expensive and therefore less attractive

e.g. : « non-point source pollution tax » levied by water agencies

Modifies the gross margin and therefore the slope of the isorevenue lines

Taxes – Example

Assessing and comparing different options

Modelling and simulating in order to help public decision-making !

Efficiency : *Meeting the objective at the lowest possible cost*

Acceptability

ModelEco

Example

ModelEc

• Cereal farm (lesson 11)

- 2 crops : wheat, maize
- 2 technologies : intensive, extensive
- 2 constraints : land and labour
- To measure pesticide use, the treatment frequency index (IFT) is used

Policy :

1. **Regulations** : Prohibition to exceed a threshold

How to make the simulation of several price levels automatic ? GAMS: LOOP

2. Subsidy :Subject to compliance with a maximum of 140 IFT/ha How to introduce an « if... then... » condition in equations ? GAMS: binary variable

Policy: Regulations -> Prohibition to exceed more than 140IFT/ha

*_____ DECLARATIONS C crops /wheat,maize/ DATA *_____ land availability in hectares /50/ labour availability in hours /2000/ regulatory limit for operation /140/ LN(C) labour needs per hectare and per crop (hours) 25 50/

GM(C) gross margin per crop (euros) /wheat 450 maize 1000/

sets

scalar

LAND A

/wheat

maize

;

RTFI

LABOUR A

*_____ MODEL variables total farm income (euros) positive variables X area per crop (hectares) equations OBJECTIVE objective function LAND land equation LABOUR labour equation OBJECTIVE.. sum(c, GM(c)*X(c)) =E= Z ; sum(c, X(c)) =1= LAND A ; LAND.. LABOUR.. sum(c, LN(c)*X(c)) =L= LABOUR A ;

model example first example /all/;

SOLUTION solve example using LP maximizing Z;

Regulations – Example

Policy: Regulations -> Prohibition to exceed more than ?TFI/ha Simulation of several price levels automatic

*	-	DECLARATIONS	
sets C crops /1	wheat, maize/		
;			
*	-	DATA	
scalar			
LAND_A	land availability in he	ectares	/50/
LABOUR A	labour availability in	hours	/2000/
RTFI	regulatory limit for op	eration	/140/
;			
1			

parameter LN(C) labour needs per hectare and per crop (hours) /wheat 25 maize 50/

GM(C) gross margin per crop (euros) /wheat 450 maize 1000/

```
TFI(C) tfi per hectare and per crop
/wheat 5, maize 3.6/
```

Regulations – Example					
*	-	MODEL			
variables					
Z total	farm income (euros)			
; positive va X area per :	riables crop (hectare	Pause the slideshow and introduce this policy into the			
		primal0.gms model vourself			
equations OBJECTIVE	objectiv	and study the impact on crop			
LAND	land equ	rotation and income			
LABOUR	labour eq	Uacion			
TFIMax ;	reglement	ation			
OBJECTIVE sum(c, GM(c)*X(c)) =E= Z ;					
LAND $sum(c, X(c)) = 1 = LAND_A;$					
LABOUR	<pre>sum(c, LN(c)</pre>	*X(c)) =L= LABOUR_A ;			
TFIMax sum(c, X(c)*TFI(C)) =1= RTFI ;					
<pre>model example first example /all/;</pre>					

solve example using LP maximizing Z;

Two possibilities, the farmer chooses the best solution

Subsidies – Example – En GAMS

Policy : if the farmer has no intensive practices then he receives a per-hectare premium

* sets C crops /	DECLARATIONS		<pre>variables Z total farm income (euros) ; positive variables X area per grop (bectares)</pre> 2 variables 2 variables 2 variables 4 together + binary variable -> model type MINLP
* scalar LAND_A LABOUR_A RTFI	DATA land availability in hectares labour availability in hours regulatory limit for operation	/50/ /2000/ /140/	equations OBJECTIVE objective function
; parameter LN(C) labo /wheat	our needs per hectare and per crop (hours 25)	LAND land equation LABOUR labour equation TFIMax reglementation ; OBJECTIVE sum(c, GM(c)*X(c)) =E= Z ;
Pause the slideshow and introduce this policy into the primal0.gms model yourself, with a 100€ per-hectare premium and a constraint at 140 TFI/ha		troduce this nodel yourself, emium and a FI/ha	LAND sum(c, X(c)) =1= LAND_A ; LABOUR sum(c, LN(c)*X(c)) =L= LABOUR_A ; TFIMax sum(c, X(c)*TFI(C)) =1= RTFI model example first example /all/; ModelEco
;			* SOLUTION solve example using maximizing Z;