Sequence 3 : Risk in agricultural economics models

Unit 1 : Agriculture, a risky activity

Lesson 24 : Chance-constrained models

Florence Jacquet

ModelEco

Behaviour in the face of risk as an income security constraint

• Safety First $Z_e \ge Z_0 \quad \forall e, state of nature$

 $\Pr\{\tilde{Z} \le Z_0\} \le \alpha \text{ if } \alpha = 0 \quad \Leftrightarrow \quad Z_s \ge Z_0$

• General formulation Chance Constrained Model (Charnes, Cooper 1959)

 $\Pr{\{\tilde{Z} \le Z_0\} \le \alpha} \begin{cases} \tilde{Z} \text{ random income} \\ Z_0 \text{ minimum income wanted by the farmer} \\ \alpha \text{ tolerated probability that the minimum income level may not be reached} \end{cases}$

ModelEc

• Linearized formulation : Target-MOTAD (Tauer, 1983)

Chance-Constrained Model

If there is a sufficient number of states of nature and \tilde{Z} follows a normal distribution, then :

 $\Pr{\{\tilde{Z} \leq Z_0\} \leq \alpha \text{ is written } \mathbb{E}(\tilde{Z}) - Z_0 > \theta_{\alpha} \sigma(\tilde{Z})\}}$

With θ_{α} value from Laplace Gauss tables

Data from Laplace Gauss tables					
α	0,3	0,2	0,1	0,05	0,01
θ	0,53	0,84	1,28	1,65	2,33

For example, if the farmer wants to be 95% certain that he will receive an income of 18000, then :

 $Pr{\{\tilde{Z} \le 18000\} \le 0,05 \text{ is written } \mathbb{E}(\tilde{Z})-18000 > 1,65 \sigma(\tilde{Z}) \}}$

GAMS notation :

SQR Square SQRT Square root

With :

- Al income expectation (variable)
- S states of nature (set)
- Z0 minimum income scalar (scalar)
- teta probability function coef. (1,65 pour 95%) (scalar)

p(S) probability of S (parameter)

S	i.t. $\mathbb{E}(\tilde{Z}) - Z_0 > \theta_{\alpha} \sigma (Zs)$ $\mathbb{E}(\tilde{Z}) = \sum_{s} [p_s \sum_{j} c_{js} x_j]$ $\sigma(\tilde{Z}) = \sqrt{\sum_{s} [Z_s - \mathbb{E}(\tilde{Z})]^2} p$
	$\bigcup(\Sigma) = \bigvee \sum_{s} [\Sigma_{s} \cup (\Sigma)] : P_{s}$
objective	RM =e= sum(S, RI(S)*p(S));
CCM	AI-Z0 =g= teta*SD;
randomIncome(S)	RI(S) = $e = sum(C, GM(S,C) * X(C));$
standardDeviation	SD =e= SQRT(sum [S, SQR(RI(S)-Z)*p(S)]);

E(Ĩ)

Max

Writing in GAMS

Linearization of the chance-constrained model

Large model case, several non-linearities : Linearizing to facilitate resolution Target-MOTAD : Variation of MOTAD with chance-constrained linearization Target = minimum income wanted

Maximize

$$\Xi(\tilde{Z}) = \sum_{s} [p_{s} \sum_{j} c_{js} x_{j}]$$

∀i

∀j, s

Under the constraints

$$\begin{split} & \sum_{j} c_{js} x_{j} \geq Z_{0} \\ & \sum_{s} p_{s} D_{s} \leq \lambda \\ & x_{j} \text{ , } D_{s} \geq 0 \end{split}$$

 $\sum_{i} a_{ii} x_{i} \leq b_{i}$

Z0 : threshold income

- D_s : total of all income deviations below the threshold income
- ps : occurrence probability of state of nature e
- $\lambda_{\rm }$: total deviation tolerance level in relation to minimum income Z0

Writing in GAMS

$$Z_0 - D_s \le \sum_j c_{js} x_j \qquad \forall s$$

 $\sum_{s} p_{s} D_{s} \leq \lambda$

Deviation from the minimum income for each state of nature deviation(S).. Z0-DEV(S) =1= RI(S);

Constraint limiting the weighted sum of deviations lambda.. sum(S, DEV(S)*p(S)) =l= LBD;

With :

- DEV(S) positive variable, measures the deviation above Z0 per state of nature
- LBD scalar that measures the tolerated average deviation

for example chosen according to the characteristics of the farmer

