Sequence 3 : Modelling risk and time

Unit 3 : Modelling time

Lesson 29 : Multi-period models

Florence Jacquet

ModelEco

Multi-period models

- Activities and constraints -> for each period
- Inter-temporal optimization

N : planning horizon Period during which decisions are made

- \bullet X_n level of activity X in year n
- ▶ Availability of resources in year n according to decisions made in n-1
- => Represent using transfer equation

The objective function

- According to results throughout entire planning horizon
- Aggregation updated over time
 -> updating rate
- If updating rate is unknown, use the long-term savings interest rate

The updating rate expresses the preferences of the decider for the present moment according to the future. The higher it is, the more the decider values current incomes over future ones.

Maximization of updated available incomes (which can also be named consumption)

$$Max \cdot Z = \sum_{n=1}^{N} \frac{CONSO_n}{(1+a)^{n-1}}$$

CONSO_n : withdrawal for year n consumption a : updating rate

Constraints

e.g. : land constraint with no land extension and/or annual rental -> same as in static land constraint with land purchase and/or rental over several years -> constraints linked to one another

Livestock constraints

▶ Number of animals in year N may depend on year N-1

 $\,\circ\,$ e.g. : transition link between 2 year old heifer/1year old heifer

 $X_{heifer2,n} = X_{heifer1,n-1}$, $X_{heifer2,n}$ number of 2 year old heifers in year n equals $X_{génisse1,n-1}$ number of 1 year old heifers in year n-1

- ► The farmer makes choices (herd extension, sales) which impact the years to come

 e.g.: transition between cow and in-calf heifer (3 years) and cow of the following year

 X_{cow,N} = X_{cow,N-1}-AV_{cow,n-1} + X_{heifer3,N-1} AV_{heifer3,n-1}
 AV_{heifer3,n} ≤ X_{heifer3,n}
- Remember to take into account the initial situation otherwise the herd does not get larger !
 e.g.: X_{heifer2,n} = X_{heifer1,n-1} +X-init_{heifer1,n}

Investment constraints

ModelE

Investment constraints

- $\,\circ\,$ An investment generates resources for the J years to come
- $^{\circ}$ NI_n=Σ^JI_{n-(j-1)}, ∀ n the investment level of year n depends on the investments of the j-1 previous years
- \circ Possibility of having NI₀
- Investment financing :
 - Either annual depreciation -> cost in global margin
 - Or payment upon purchase

Example of investment constraints

Example – model : 4 crops (C) 3 irrigation methods (R – without irrigation, surface, localised) 15 periods (T) Data concerning gross margins (MB), water needs (BE) Equipment for localised irrigation : lifespan of equipment : 5 years (J)

EQUATIONS	LAND(t)	land constraint	Availability constraint : same constraint as in the static model, indexed to set t (period)
	WATER	irrigation water constraint	
	EQUIPE(t)	drip equipment constraint	
	NEQUIP(t)	equipment level	<i>Constraints that link years together</i>
	MARGIN(t)	global margin calculation	
	OBJECTIVE	objective function ;	

```
LAND(t).. sum((c,r), X(c,r,t)) =1= sup ;
WATER(t).. sum((c,r), be(c,r)*X(c,r,t)) =1= DE*SUP ;
EQUIPE(t).. sum(c, X(c,'r2',t)) =1= NEQ(t);
```



```
NEQUIP(t) equipment level
MARGIN(t) global margin calculation
OBJECTIVE objective function ;
```

```
NEQUIP(t).. NEQ(t) = e = sum(j, AEQ(t-[ord(j)-1]));
```

MARGIN(t).. MG(t) =e= sum((c,r), mb(c,r)*X(c,r,t)) - NEQ(t)*peq/card(j);

OBJECTIVE.. sum(t, MG(T)/((1+ta)**(ord(t)-1))) = e = Z ;

Cashflow constraints

Investment constraints

- Investment financing :
 - Either distribution of the annual depreciation -> weight in global margin
 - Or payment upon the purchase of the investment

 $IMMO_N = peq^*AEQ_N$

 $LIQ_{N-1} + LIQ0 + MG_N = IMMO_N + LIQ_N + CONS_N$

LIQ_N MG_N IMMO_N investment year N LIQ0

cashflow for year N global gross margin for year N money immobilized in

consumption withdrawal for

initial cashflow

It's your turn now ! Solution in the next video !

