THÈSE POUR OBTENIR LE GRADE DE DOCTEUR DE MONTPELLIER SUPAGRO

En Biologie, Interactions, Diversité Adaptative des Plantes (BIDAP)

École doctorale GAIA – Biodiversité, Agriculture, Alimentation, Environnement, Terre, Eau
Portée par l’Université de Montpellier

Unité de recherche Biochimie & Physiologie Moléculaire des Plantes (BPMP)

Rôle de la régulation chromatinienne dans le contrôle de l’expression des gènes en réponse aux variations nutritionnelles en azote chez Arabidopsis

Présentée par Fanny Bellegarde
Le 08 décembre 2017

Sous la direction de Alain Gojon
Et Antoine Martin

Devant le jury composé de

Christel CARLES, Maître de conférences, Université Grenoble Alpes
Martin CRESPI, Directeur de Recherche, CNRS
Mathieu INGOUFF, Maître de conférences, Université de Montpellier
Thierry LAGRANGE, Directeur de Recherche, CNRS
Christian MEYER, Directeur de Recherche, INRA
Alain GOJON, Directeur de Recherche, INRA
Antoine MARTIN, Chargé de Recherche, CNRS

Rapporteur
Rapporteur
Examineur
Examineur
Examineur
Directeur de thèse
Co-directeur de thèse
Sommaire

Chapitre 1 : Introduction

1. Absorption et assimilation du nitrate chez Arabidopsis .. 6
 1.1. Importance de l’azote et formes assimilables par les plantes............................... 6
 1.2. Systèmes de prélèvement racinaire du NO₃⁻ .. 7
 1.1. Régulations des transporteurs de NO₃⁻ ... 9

2. Régulation de l’expression génique par la chromatine.. 11
 2.1. Définition de chromatine .. 11
 2.2. Notion d’états chromatiniens ... 13
 2.3. Acteurs du dépôt et de la dynamique H3K27me3.. 15
 2.4. Régulation chromatinienn e liée à H3K27me3 et PRC2 chez Arabidopsis 17

3. Objectifs de thèse... 22

Chapitre 2 : Matériels et méthodes .. 24

1. Matériel végétal ... 25

2. Conditions de cultures ... 25
 2.1. Cultures in vitro ... 25
 2.2. Cultures hydroponiques .. 25

3. Génotypage .. 26
 3.1. Extraction de l’ADNg ... 26
 3.2. PCR .. 27
 3.3. qPCR .. 27

4. Analyse des niveaux de transcrits .. 28
 4.1. Extraction des ARNm totaux ... 28
 4.2. Run-on ... 28
Chapitre 3 : Analyse du rôle de PRC2 dans la régulation transcriptionnelle de NRT2.1 ... 36

1. Contexte ... 37
2. Résultats .. 38

2.1. Analyse du rôle de PRC2 dans la régulation transcriptionnelle de NRT2.1 en fonction des variations nutritionnelles en azote (article) ... 38

2.2. Résultats supplémentaires .. 39

3. Discussion et perspectives .. 45

Chapitre 4 : Analyse du rôle de HNI9/IWS1 en réponse aux variations en N 51

1. Contexte ... 52
2. Résultats .. 53

2.1. Recherche des cibles directes de HNI9/IWS1 en condition de forte nutrition azotée .. 53

2.2. Analyse du niveau de ROS sur HN et impact phénotypique 54
Sommaire

2.3. Dynamique chromatinienne aux loci de gènes impliqués dans l’état redox dont
l’activation sur HN est altérée chez hni9-1 ... 56

3. Conclusion et perspectives ... 57

Chapitre 5 : Interaction entre CLF et NRT2.1 dans la modulation de l’architecture
racinaire ... 61

1. Contexte .. 62

2. Résultats .. 64

2.1. Effet des mutations nrt2.1-2 et clf-29 sur l’architecture racinaire 64

2.2. Modèle hypothétique du rôle de NRT2.1 dans le développement des primordia
de racines latérales ... 68

3. Conclusion et perspectives ... 70

Chapitre 6 : Conclusion générale ... 72
Abréviations

<table>
<thead>
<tr>
<th>Acronyme</th>
<th>Définition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADN</td>
<td>Acide désoxyribonucléique</td>
</tr>
<tr>
<td>ADNc</td>
<td>ADN complémentaire</td>
</tr>
<tr>
<td>ADNg</td>
<td>ADN génomique</td>
</tr>
<tr>
<td>ARN</td>
<td>Acide ribonucléique</td>
</tr>
<tr>
<td>ARNm</td>
<td>ARN messager</td>
</tr>
<tr>
<td>ChIP</td>
<td>Chromatin Immunoprecipitation</td>
</tr>
<tr>
<td>CLF</td>
<td>CURLY LEAF</td>
</tr>
<tr>
<td>Col-0</td>
<td>Columbia (écotype)</td>
</tr>
<tr>
<td>em</td>
<td>Émergence (stade)</td>
</tr>
<tr>
<td>GFP</td>
<td>Green Fluorescent Protein</td>
</tr>
<tr>
<td>GUS</td>
<td>β-glucuronidase</td>
</tr>
<tr>
<td>H2O2</td>
<td>Peroxyde d’oxygène</td>
</tr>
<tr>
<td>H3</td>
<td>Histone 3</td>
</tr>
<tr>
<td>HATS</td>
<td>High Affinity Transport System</td>
</tr>
<tr>
<td>HN</td>
<td>High Nitrogen (10 mM NH₄NO₃)</td>
</tr>
<tr>
<td>HNl9/IWS1</td>
<td>High Nitrogen Insensitive 9/ Interact With Spt6 1</td>
</tr>
<tr>
<td>INTACT</td>
<td>Isolation of Nuclei TAgged from specific Cell Types</td>
</tr>
<tr>
<td>K</td>
<td>Lysine</td>
</tr>
<tr>
<td>KNO₃</td>
<td>Nitrate de potassium</td>
</tr>
<tr>
<td>LATS</td>
<td>Low Affinity Transport System</td>
</tr>
<tr>
<td>LHP1</td>
<td>LIKE-HETEROCHROMATIN PROTEIN1</td>
</tr>
<tr>
<td>LN</td>
<td>Low Nitrate (0.3 mM KNO₃)</td>
</tr>
<tr>
<td>LUC</td>
<td>Luciférase</td>
</tr>
<tr>
<td>me3</td>
<td>Triméthylation</td>
</tr>
<tr>
<td>N</td>
<td>Azote</td>
</tr>
<tr>
<td>NH₄⁺</td>
<td>Ammonium</td>
</tr>
<tr>
<td>NiR</td>
<td>Nitrite Reductase</td>
</tr>
<tr>
<td>NO₃⁻</td>
<td>Nitrate</td>
</tr>
<tr>
<td>NRT</td>
<td>Nitrate Transporter</td>
</tr>
<tr>
<td>NTF</td>
<td>Nuclear Targeting Fusion protein</td>
</tr>
<tr>
<td>pb</td>
<td>Paire de bases</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>pNRT2.1</td>
<td>Promoteur du gène NRT2.1</td>
</tr>
<tr>
<td>PRC2</td>
<td>Polycomb Repressive Complex 2</td>
</tr>
<tr>
<td>qPCR</td>
<td>PCR quantitative</td>
</tr>
<tr>
<td>RL</td>
<td>Racine Latérale</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive Oxygen Species</td>
</tr>
<tr>
<td>RT</td>
<td>Reverse Transcription</td>
</tr>
<tr>
<td>SWN</td>
<td>SWINGER</td>
</tr>
<tr>
<td>WS</td>
<td>Wassilewskija (écotype)</td>
</tr>
<tr>
<td>WT</td>
<td>Wild type (sauvage)</td>
</tr>
<tr>
<td>XRN</td>
<td>EXORIBONUCLEASES</td>
</tr>
</tbody>
</table>
Chapitre 1

Introduction
Chapitre 1 Absorption et assimilation du nitrate chez Arabidopsis

1. Absorption et assimilation du nitrate chez Arabidopsis

1.1. Importance de l’azote et formes assimilables par les plantes

Les plantes puisent l’eau et les éléments minéraux dont elles ont besoin dans le sol par l’intermédiaire de leur système racinaire. Ces fonctions de prélèvement racinaires sont cruciales car le premier facteur abiotique limitant la croissance de la grande majorité des plantes est la disponibilité en eau, suivie par la disponibilité en azote (N). En effet, N est un constituant majeur des organismes vivants puisqu’il entre dans la composition de nombreuses molécules vitales (telles que les acides nucléiques, la chlorophylle, les protéines, etc.) et représente 1 à 3 % de la matière sèche végétale (Morot-Gaudry, 1997). Dans les sols, N peut se trouver en quantité extrêmement variable et sous différentes formes, dont certaines ne sont pas facilement assimilables par les plantes (Bockman et al. 1990). Dans la majorité des terres cultivées, N est surtout présent sous forme inorganique, nitrate et/ou ammonium (respectivement : NO$_3^-$ et NH$_4^+$), et dans une moindre mesure sous forme organique (par exemple les acides aminés) (Näsholm et al. 2009). Les plantes sont capables de prélever ces différentes formes de N de la solution du sol, néanmoins le NO$_3^-$ est la principale forme de N prélevée par la plupart des espèces herbacées (Crawford & Glass 1998). Le NO$_3^-$ est présent sous forme dissoute dans la solution du sol, où sa concentration peut être fortement variable, à la fois dans le temps et l’espace, allant du µM à la dizaine de mM (Miller et al. 2007). Ainsi, il est fréquent que sans apport d’engrais, les plantes se trouvent en situation limitante en N. Une carence prolongée en NO$_3^-$ va avoir de nombreux impacts négatifs, comme une dégradation massive des protéines affectant profondément le métabolisme (véritable réponse d’autophagie destinée à libérer de l’N), des chloroses foliaires (dégradation de la chlorophylle), une floraison précoce, une accélération de la sénescence, et enfin une diminution de la biomasse des plantes (de 2 à 3 fois), ce qui a de lourdes conséquences en agriculture (Tschoep et al. 2009). Pour faire face à cette contrainte, les plantes mettent en œuvre une large panoplie de réponses à la carence en N, en particulier pour optimiser l’efficacité du prélèvement de N en modulant (i) la taille et l’architecture du système racinaire(exploration du sol), et (ii) l’expression et l’activité des systèmes de transport racinaires de NO$_3^-$ et de NH$_4^+$ (modulation de l’efficacité de l’absorption de N à partir de la solution du sol) (Nacry et al. 2013).
Figure 1.1 : Présentation des différents transporteurs d’influx impliqués dans le prélèvement du nitrate (NO₃⁻) depuis la solution du sol, selon la concentration en NO₃⁻ du milieu externe.
La famille NRT2 nécessite le partenaire protéique NAR2.1 pour former une unité fonctionnelle d’influx de NO₃⁻.
1.2. Systèmes de prélèvement racinaire du NO$_3^-$

Les plantes sont capables d’absorber le NO$_3^-$ sur une large gamme de concentrations externes car elles disposent de divers types de systèmes de transport présentant des affinités différentes pour cet ion (Crawford & Glass 1998). Les études physiologiques du prélèvement racinaire de NO$_3^-$ ont permis de caractériser deux grands types de systèmes chez de nombreuses espèces. Les systèmes à haute affinité (High Affinity Transport Systems, HATS), sont capables d’assurer une absorption racinaire pour de faibles concentrations externes en NO$_3^-$ (de quelques µM à 0.5mM). Pour les concentrations supérieures à 0.5mM, les HATS sont généralement saturés (variable selon les transporteurs), ce qui ne permet pas d’accélérer le prélèvement en réponse à l’augmentation de la concentration externe en NO$_3^-$. À l’inverse des HATS, les transporteurs à faible affinité (Low-Affinity Transport Systems, LATS) ne sont généralement pas saturables, et leur activité augmente de façon linéaire avec la concentration externe en NO$_3^-$. Cette activité demeure faible lorsque la concentration en NO$_3^-$ est en deçà du mM, mais peut devenir très importante au-delà, autorisant ainsi une capacité de prélèvement élevée (Nacry et al. 2013). Au sein de ces deux types de systèmes, on distingue également les systèmes dits "constitutifs" (cLATS/cHATS, dont l’expression ne dépend pas de la présence de NO$_3^-$) des systèmes "inductibles" (iLATS/iHATS, dont l’expression est induite par NO$_3^-$).

Chez Arabidopsis thaliana (Arabidopsis), il existe 4 familles multigéniques qui regroupent des protéines pouvant transporter du NO$_3^-$ dans la plante (Krapp et al. 2014). La famille NRT1/PTR Family (NPF) possède 53 membres et regroupe notamment les LATS (Léran et al. 2014), avec l’exception de NPF6.3/NRT1.1 qui peut être un LATS ou un HATS selon son état de phosphorylation. La famille NO$_3^-$ TRANSPORTER 2 (NRT2) possède 7 membres et regroupe les HATS. Les NRT2 présentent la particularité d’interagir avec un partenaire protéique (NAR2.1/NRT3.1) qui est nécessaire pour assurer la fonction de transport (Orsel et al. 2006). La famille CHLORIDE CHANNELS (CLC) possède 7 membres qui sont en majorité des canaux à chlorure ayant une faible affinité pour le NO$_3^-$, à l’exception de deux d’entre eux qui présentent au contraire une meilleure sélectivité pour le NO$_3^-$. En particulier, CLCa joue un rôle important pour le stockage du NO$_3^-$ dans la vacuole (De Angeli et al. 2006). Pour finir, les SLOW ANION CHANNEL ASSOCIATED HOMOLOGUES (SLAC/SLAH) possèdent 5 membres dont deux (SLAC1 et 3) sont impliqués dans le transport de NO$_3^-$ pour la fermeture des stomates (Krapp et al. 2014). En ce qui concerne plus particulièrement l’absorption racinaire, six transporteurs y participent. Selon la concentration en NO$_3^-$ dans le milieu, son influx dans les racines est réalisé par deux membres de la famille
Figure 1.2 : Phénotype du mutant *nrt2.1-2* en comparaison à un sauvage (WT).

Les plantes ont été cultivées 3 semaines sur une condition limitante en nitrate (0.3 mM KNO₃, faible N) ou enrichie en azote (10 mM NH₄NO₃, fort N). L’échelle représente 1 cm.
Chapitre 1 Absorption et assimilation du nitrate chez Arabidopsis

NPF : NRT1.1 (HATS ou LATS) et NRT1.2 (LATS), pour de fortes concentrations, et/ou quatre membres de la famille NRT2 : NRT2.1, NRT2.2, NRT2.4 et NRT2.5 (HATS), pour de faibles concentrations (Lezhneva et al. 2014) (Figure 1.1). De plus, ces six transporteurs présentent d’autres caractéristiques spécifiques, qui leur font jouer des rôles différents. NRT1.2 est constitutif et compose le système cLATS, alors que NRT1.1 est partiellement inductible par le NO₃⁻, et participe aussi bien au cLATS qu’au iLATS (valable également pour sa fonction de HATS). NRT2.1 et NRT2.2 constituent le système iHATS (Okamoto et al. 2003). NRT2.2 suit le même profil de régulation que NRT2.1 mais son importance fonctionnelle est moindre (Lezhneva et al. 2014). NRT2.4 et NRT2.5 sont des transporteurs à très haute affinité pour le NO₃⁻ et sont particulièrement impliqués dans l’absorption suite à une carence prolongée en NO₃⁻ (Lezhneva et al. 2014). NRT2.5 est constitutif et est l’élément principal du cHATS (Kotur & Glass 2015). La plupart des études se sont concentrées sur la compréhension des mécanismes d’influx intervenant sur de faibles concentrations en NO₃⁻ externe, et donc au système de type HATS, où NRT2.1 joue un rôle majeur (Filleur et al. 2001 ; Chopin et al. 2007). En effet, il a été démontré qu'une mutation dans le gène codant pour la protéine NRT2.1 entraîne une diminution de 75% de l'activité totale des HATS alors que NRT2.2 n'avait que peu d'impact (Cerezo et al. 2001). De par son rôle majeur, une mutation dans NRT2.1 entraîne un phénotype drastique sur des milieux contenant de faibles concentrations en NO₃⁻ (Figure1.2). Néanmoins, dans un fond mutant nrt2.1, la contribution au HATS de NRT2.2 augmente, suggérant une possible redondance fonctionnelle (partielle) au sein de cette famille ou une coopération entre les transporteurs (Li et al. 2007). Cette hypothèse est renforcée par le fait qu'en réponse à la carence, le quadruple mutant nrt2.1/2.2/2.4/2.5 perd 95% du transport HATS (Kiba et al. 2012 ; Lezhneva et al. 2014).

Une fois entré dans la cellule, le NO₃⁻ peut être transporté vers la vacuole (réserve nutritionnelle et participation à la turgescence cellulaire), assimilé dans les racines ou transporté vers les faisceaux du xylème pour être exporté par la sève brute vers les feuilles où il peut également être stocké ou assimilé (Dechorgnat et al. 2010). La localisation de l’assimilation (racinaire ou foliaire) dépend des espèces, néanmoins, chez Arabidopsis, lorsque les plantes sont cultivées sur une concentration élevée en NO₃⁻ (6mM), l’assimilation est principalement foliaire (Krapp et al. 2011). Dans les deux cas, l’assimilation nécessite plusieurs étapes. Le NO₃⁻ est d’abord réduit en nitrite (NO₂⁻) dans le cytoplasme par la nitrate réductase (NR). Ce nitrite est ensuite transporté dans les plastes où il est réduit par la nitrite réductase (NiR) en NH₄⁺. Le NH₄⁺ ainsi produit reste dans le plaste et est en majorité assimilé dans le cycle de la GS/GOGAT afin de produire du glutamate, un acide aminé qui permet la
Figure 1.3 : Schéma illustrant les différents types de régulations transcriptionnelles mises en place au locus NRT2.1 ainsi que les acteurs moléculaires majeurs de ces régulations.

(A) Induction ou répression exercée par le nitrate (NO₃⁻) lui-même selon sa concentration.

(B) Répression systémique exercée par un fort statut azoté.

(C) Régulation systémique exercée par le métabolisme carboné.

Les acteurs (encadrés) ou régulations (soulignées) ayant un rôle répresseur sont en rouge et ceux ayant un rôle activateur en vert. La taille de police des régulations est révélatrice de la dose (faible/fort).
synthèse de tous les autres acides aminés (Masclaux-Daudresse et al. 2010). Le prélèvement du NO$_3^-$ dans la solution du sol et son transport dans la plante sont donc les premières étapes de la production des acides aminés nécessaires à la synthèse des protéines et de nombreuses autres macromolécules.

1.1. Régulations des transporteurs de NO$_3^-$

La plupart des transporteurs de NO$_3^-$ détaillés supra sont finement régulés à différents niveaux (transcriptionnel, post-transcriptionnel et post-traductionnel), permettant aux plantes de s'adapter aux fluctuations de leur environnement nutritionnel. Les mécanismes impliqués dans la régulation post-transcriptionnelle des transporteurs de NO$_3^-$ commencent à être éclaircis (Jacquot et al. 2017). Néanmoins, compte tenu du thème de ce travail de thèse, ils ne seront pas détaillés ici. Nous allons nous focaliser dans cette partie sur les régulations transcriptionnelles des transporteurs de NO$_3^-$, qui peuvent être propres à chaque transporteur. *NRT2.1* et *NRT1.1* jouant un rôle majeur dans le prélèvement racinaire, ils sont devenus des gènes modèles pour l’étude des mécanismes de régulation assurant la réponse des plantes aux variations de disponibilité externe en NO$_3^-$. Il a notamment été montré que l’abondance des transcrits de *NRT2.1* dans les racines est fortement corréllée avec l’influx de NO$_3^-$ assuré par le HATS. Il en est de même, dans une moindre mesure, pour *NRT1.1* et l’influx dirigé par le LATS (Okamoto et al. 2003). Cela suggère que la régulation transcriptionnelle de *NRT2.1* et *NRT1.1* joue un rôle important dans le contrôle de l'influx de NO$_3^-$. Les travaux conduits sur *NRT2.1* ont permis de dégager au moins trois régulations majeures ciblant ce gène (Figure 1.3). La première régulation correspond à l’action de mécanismes de signalisation spécifiques du NO$_3^-$, qui suivant les conditions, peuvent aboutir à l’induction ou à la répression de l’expression de *NRT2.1* (Nacry et al. 2013). La seconde régulation est exercée par la photosynthèse. En effet, *NRT2.1* présente la particularité d’être régulé par le métabolisme carboné afin de coordonner ce dernier avec l’absorption du NO$_3^-$. Par exemple, l’influx du NO$_3^-$ assuré par NRT2.1 augmente au cours du jour et décroît à l'obscurité. Les sucres (produits de la photosynthèse) seraient responsables de cette régulation en modulant l’expression de *NRT2.1* (Lejay et al. 1999, 2003, 2008). Il a été récemment montré qu’un facteur de transcription mobile, ELONGATED HYPOCOTYL 5 (HY5, bZIP) participe à cette régulation (Chen et al. 2016). La protéine HY5 est transportée des feuilles vers les racines, où elle se fixe sur le promoteur *NRT2.1* de manière dépendante de la présence de sucre puisqu'elle est abolie dans un mutant insensible aux sucres (*sis4*) (Chen et al. 2016). La troisième régulation est associée au rétrocontrôle exercé par le statut nutritionnel en N de
Figure 1.4 : Illustration du phénotype du mutant *hni9-1* cultivé sur 0.3 mM KNO₃ (LN) et 10 mM NH₄NO₃ (HN).

(A) Coloration GUS sur des plantes sauvages (WT) et mutantes *hni9-1*, exprimant la construction pNRT2.1::GUS, selon le milieu de culture après 6 jours de croissance.

(B) Enrichissement en marques chromatiniennes H3K27me3, H3K4me3 et H3K36me3 à différentes régions du locus NRT2.1 chez un sauvage et chez le mutant *hni9-1*, selon le milieu de culture après 12 jours de croissance. D’après Widiez et al. 2011.
Chapitre 1

Absorption et assimilation du nitrate chez Arabidopsis

la plante entière. Ceci permet de réprimer l’expression de \textit{NRT2.1} et l’activité du HATS lorsque la plante est à satiété en N, ou au contraire de les stimuler en situation de carence (Naery et al. 2013). De nombreux travaux ont étudié les mécanismes responsables de ces trois types de régulation, et certains des acteurs moléculaires impliqués ont été identifiés (Figure 1.3). En ce qui concerne plus particulièrement le contrôle exercé par le statut N, qui a été abordé dans ce travail de thèse, il nous a paru important d’en faire une synthèse bibliographique détaillée, et de la publier sous la forme d’un article de revue, présenté \textit{infra} (Bellegarde et al. 2017).

Une particularité de \textit{NRT2.1} qui est à l’origine de ce travail de thèse est qu’il pourrait être soumis à une répression chromatinienne en réponse à un fort statut N, dépendante du facteur chromatinien HNI9/IWS1 (High Nitrogen Insensitive 9, présenté dans la revue) (Widiez et al. 2011) (Figure 1.4). En effet, dans une lignée sauvage cette répression de \textit{NRT2.1} est corrélée avec un enrichissement en marque répressive (H3K27me3 : tri-méthylation de la lysine 27 de l’histone H3). Chez le mutant \textit{hni9-1} cultivé sous condition répressive, le promoteur \textit{NRT2.1} maintient une activité transcriptionnelle, corrélée avec une diminution en marque répressive H3K27me3. Cette observation interroge sur le rôle de la chromatine lors de la nutrition N, et plus particulièrement sur le rôle de H3K27me3 au locus \textit{NRT2.1}. Après introduction des concepts chromatiniens, nous reviendrons plus en détail sur le phénotype du mutant \textit{hni9-1}.
Signals and players in the transcriptional regulation of root responses by local and systemic N signaling in Arabidopsis thaliana

Fanny Bellegarde, Alain Gojon and Antoine Martin*

Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes ‘Claude Grignon’, UMR CNRS/INRA/SupAgro/UM2, Place Viala, 34060 Montpellier cedex, France

* Correspondence: antoine.martin@supagro.fr

Received 30 November 2016; Editorial decision 3 February 2017; Accepted 3 February 2017

Editor: Hideki Takahashi, Michigan State University

Abstract

In natural environments, nitrogen (N) concentration in the soil fluctuates greatly and is often limiting for plant growth and development. The ability of plants to respond to changes in N availability is therefore essential for adaptation. The response of plants to N variations consists in particular of adjusting root N uptake systems and root architecture. To do so, plants integrate local sensing and signaling of external N availability with systemic sensing and signaling of their internal N status, in order to tune the functional and structural properties of the root system in accordance with the N demand for growth of the whole plant. Transcriptional regulation of gene expression is one of the most important processes plants use to adapt the properties of the root system in response to local and long-distance N pathways. This review focuses on the mechanisms that give rise to transcriptional responses in Arabidopsis roots under N fluctuations, with an emphasis on those associated with the regulation of nitrate uptake and transport systems. We discuss the putative long-distance signals triggering the gene expression responses, as well as the molecular players that locally induce transcriptional changes. We also highlight several observations revealing the importance of adopting an integrative approach in the regulation of N signaling.

Key words: Arabidopsis, long-distance signaling, nitrogen, roots, transcriptional regulation.

Introduction

The ability of plants to sense and to adapt to the local environment is essential, especially because of their sessile lifestyle. Plant signaling cascades arising from sensing environmental variations may be complex and multiple, but often eventually result in gene expression responses, in order to establish transcriptional programs contributing to the adaptation to the new environmental parameters. In this way, transcriptional reprogramming is one of the most important mechanisms to adapt to a changing environment (López-Maury et al., 2008). Nitrogen (N) is a limiting factor for plant growth. Quantitatively the most important nutrient in plants, it forms part of the composition of amino acids, nucleic acids, and many other macromolecules. However, N is often under limiting conditions in most natural conditions, as well as in many agrosystems, where it is extremely difficult to maintain N constantly available. In addition to affecting plant growth directly, N forms such as nitrate (NO₃⁻), ammonium (NH₄⁺), or some amino acids are signaling molecules...
modulating plant development (Nacry et al., 2013). Signaling mechanisms triggered by contrasting N conditions have been extensively studied. Especially in the case of NO$_3^-$, sensors, signaling modules, and downstream players in the response have been identified (Bouguyon et al., 2012; Kiba and Krapp, 2016; O’Brien et al., 2016). These studies highlight that transcriptional reprogramming plays a major role in promoting the adaptation to fluctuating N conditions (Vidal et al., 2015). This is especially the case in the roots, the most influential organs for nutrient homeostasis, which sense, acquire, and partially assimilate N. In this review, we focus on the signaling mechanisms that give rise to transcriptional responses in the roots. Two major regulations are considered: first the short-term response to NO$_3^-$, often referred to as the ‘primary NO$_3^-$ response’ (PNR), and then the regulation by the N status of the whole plant. Because the PNR has been detailed in several recent excellent reviews (Medici and Krouk, 2014). The PNR has been intensively studied and led to the identification of transcriptional reprogramming after NO$_3^-$ depletion, NLP7 is maintained in the cytoplasm by nuclear exclusion. This shuttling is abolished by NO$_3^-$, which allows the roots to react locally and very quickly to this heterogeneity. A well-known response is the PNR, activated when NO$_3^-$-depleted plants are supplied with this N source (Medici and Krouk, 2014). The PNR has been intensively studied and appears to be a model in plant molecular physiology, probably because unlike for most other nutrients, it is easy to obtain plants fully depleted of NO$_3^-$, therefore allowing actual and instant switching on of the sensing mechanisms. A large number of studies have demonstrated that the PNR induces a profound reorganization of genome-wide gene expression, reinforcing the idea of the crucial physiological relevance of this response for plants (Vidal et al., 2015). Indeed, thousands of genes are affected in Arabidopsis (Krouk et al., 2010), and the extent of this transcriptional reprogramming appears to be conserved between plants species (Zamboni et al., 2014). In particular, NO$_3^-$ induces transcription of its own transport and assimilation systems and affects the root system architecture. Expression changes occur extremely rapidly, as they can be detected within minutes after addition of NO$_3^-$ in the root environment (Krouk et al., 2010). Furthermore, this study also demonstrated the occurrence of sequential events of transcriptional reprogramming after NO$_3^-$ perception, and drew a precise kinetic view of the gene networks in the PNR.

One of the earliest events of the PNR involves NRT1.1/NPF6.3, an NO$_3^-$ transporter, which acts in this response as an NO$_3^-$ sensor (Ho et al., 2009). Indeed, loss-of-function mutation in NRT1.1 strongly attenuates the transcriptional induction of NO$_3^-$-responsive genes such as NRT2.1 (encoding a high-affinity NO$_3^-$ transporter), NIA1, or NIR (encoding nitrate and nitrite reductase, respectively) (Ho et al., 2009; Wang et al., 2009). The NRT1.1 chil-9 point mutation (NRT1.1^{PA925}), deficient for the NO$_3^-$ uptake function of NRT1.1, still displays a typical induction of NO$_3^-$-responsive genes, clearly demonstrating that NRT1.1-dependent induction of transcription occurs independently of NRT1.1 transporter activity. Furthermore, the predominant intracellular localization of NRT1.1^{PA925} suggests that NRT1.1 targeting to the cytosolic membrane is not required for transcriptional reprogramming by NO$_3^-$ (Bouguyon et al., 2015). Other NO$_3^-$-sensor(s) are thought to exist in addition to NRT1.1, because knock-out mutation of NRT1.1 does not always lead to an impaired PNR, depending on the conditions (Wang et al., 2009).

Analyses of events downstream of NO$_3^-$ perception have led to the identification of several transcription factors with a role in the regulation of NO$_3^-$-sensitive gene expression. In particular, recent studies have highlighted the central role of NIN-LIKE PROTEIN 7 (NLP7) and related NLP transcription factors. NLP7 is required for the NO$_3^-$-dependent induction of NO$_3^-$ transport and assimilation genes such as NRT2.1, NRT2.2, and NIA1, and, accordingly, loss-of-function nlp7 mutants display features of N starvation signaling, even in sufficient N conditions (Castaings et al., 2009). Recently, the signaling mechanism by which NLP7 rapidly induces the response to NO$_3^-$ has been elucidated. Under NO$_3^-$ depletion, NLP7 is maintained in the cytoplasm by nuclear exclusion. This shuttling is abolished by NO$_3^-$ perception, allowing NLP7 to reach its genomic target loci (Marchive et al., 2013). Interestingly, integration of expression data with ChIP data demonstrates that NLP7 binding can lead to either transcriptional induction or repression of NO$_3^-$-responsive genes (Marchive et al., 2013). A complementary work demonstrated that in addition to NLP7, other NLPs, and in particular NLP6, can bind the NO$_3^-$-responsive cis-element (NRE) present in some NO$_3^-$-responsive genes such as NIA1 or NIRI (Konishi and Yanagisawa, 2013). Recently, NITRATE-REGULATED GENE2 (NRG2) has been identified as another signaling component of the NO$_3^-$ response (Xu et al., 2016). NRG2 is a protein of unknown molecular function, but physically interacts with NLP7 in the nucleus, and can therefore be an important player in the transcriptional response to NO$_3^-$.

The co-regulated genes between NRG2 and NLP7 at the genome scale would provide interesting information about the role of NRG2 and about
its interaction with NLP7. Interestingly, NRG2 and NLP7 would not be required only for the PNR, but would also be generally necessary to reach the proper level of expression of N-responsive genes (Xu et al., 2016; AM, unpublished results). In addition to these frontline factors, several other transcription factors have been identified in the NO3 response. The expression of two bZIP transcription factor genes, TGA1 and TGA4, is induced by NO3, subsequently to bind NRT2.1 and NRT2.2 loci and activate their expression (Alvarez et al., 2014) (Fig. 1). Interestingly, TGA1/TGA4 may be more likely to be involved in regulating NRT2.1-dependent lateral root development, rather than NO3 uptake. The GARP transcription factor HRS1 has also been identified as a player in the PNR. HRS1 is rapidly induced by NO3 in an NRT1.1- and NLP7-dependent manner. However, HRS1 was eventually characterized as a transcription factor at the frontier between NO3 and phosphate signaling. Indeed, HRS1 regulates a genomic response involved in the repression of primary root growth, specifically under the combination of phosphate deficiency and provision of sufficient NO3 (Medici et al., 2015). This example suggests that the PNR can also be a valuable tool to identify NO3-responsive genes, which have to be further characterized in more specific, physiological conditions. Finally, several large-scale analyses demonstrated that many transcription factors are induced or repressed by NO3 (Krouk et al., 2010; Marchive et al., 2013; Alvarez et al., 2014), but their role in downstream events remains unknown.

Two studies have also nicely demonstrated the connection between transcriptional induction by NO3 and repression by N metabolites generated by NO3 assimilation. AFB3 is an auxin receptor, the expression of which is rapidly induced by NO3, leading to remodeling of the root architecture (Vidal et al., 2010). The cascade of transcriptional events in this response has been elucidated: NO3-induced AFB3 expression leading to the induction of the transcription factor gene NAC4, which in turn induces the expression of another transcription factor gene OBP4, of which the targets are not known (Vidal et al., 2013b). Interestingly, miR393, which targets AFB3 transcripts for degradation, is in turn transcriptionally induced by N metabolites produced downstream of NO3 assimilation, generating a coherent feed-forward loop of regulation (Vidal et al., 2010).

Transcriptional regulation by N status

Besides PNR, another major regulation governing root NO3 acquisition at the gene expression level is the feedback control exerted by the N status of the whole plant. Plants are able to acclimate to a wide range of steady-state NO3 regimes in order to maintain root NO3 uptake at the rate needed for N homeostasis (Clement et al., 1978). At the functional level, this corresponds to a modulation of the expression/activity of root uptake systems and of the development and growth of

Fig. 1. Transcription factors and chromatin regulators involved in the regulation of expression of the main root nitrate transporter genes NRT1.1, NRT2.1, NRT2.2, NRT2.4, and NRT2.5. Generic regulators mean that they have a role in a wide range of N conditions [NLP7 (Castangias et al., 2009; Marchive et al., 2013), NRG2 (Xu et al., 2016) and BT1/BT2 (Araus et al., 2016)]. The other regulators correspond to genes that were shown to play a role in a particular condition of N availability, which does not exclude the possibility that they may have a more generic role if investigated in a broader range of N conditions [NF-YA5 (Zhao et al., 2011), TGA1/TGA4 (Angeline et al., 2014), bZIP1 (Para et al., 2014), TCP20 (Guan et al., 2014), LBD37/38/39 (Rubin et al., 2009), and HN19 and RTF1 (Widiez et al., 2011)]. Note that specificity of response is here mentioned in the context of N availability only, as some regulators may have a role in response to other stimuli. No N, plants have been subjected to N starvation; High N, 10 mM NH4NO3. Red lines indicate a direct interaction between the regulator and its target validated by ChIP [for NLP7 (Marchive et al., 2013), TGA1/TGA4 (Angeline et al., 2014), bZIP1 (Para et al., 2014), and TCP20 (Guan et al., 2014)]. Black lines indicate regulations for which no direct interaction has been demonstrated.
lateral roots (Forde, 2002; Nacry et al., 2013). For instance, N limitation leads to a marked up-regulation of NRT2.1 expression, whereas high N supply has the opposite effect (Lejay et al., 1999; Zhuo et al., 1999). At the genome level, transcriptomic studies reported that from 600 to 2200 genes responded in the long term (i.e. several days) to N starvation or N limitation in Arabidopsis (Peng et al., 2007; Krapp et al., 2011; Ruffel et al., 2011; Widiez et al., 2011).

A central mechanism ensuring adaptation to changes in N regime is the systemic signaling of the N status that informs the roots of the N demand for growth of the whole organism (Forde, 2002; Nacry et al., 2013). The key role of systemic signaling pathways is evidenced by ‘split-root’ experiments that allowed differential NO3− treatments on two or more portions of the root system. For instance, N deprivation on one side of the split-root system triggers a compensatory up-regulation of both root NO3− uptake and lateral root growth in the other side still fed with NO3− (Zhang et al., 1999; Gansel et al., 2001; Remans et al., 2006; Ruffel et al., 2011). Hence, the general concept associated with systemic signaling of N status is that the N status of all organs is perceived by specific sensor(s), which activate synthesis/transport of long-distance signal(s), which in turn integrate this information at the whole-plant level and convey it to the roots (Forde, 2002; Nacry et al., 2013). Despite their crucial importance in ultimately determining the efficiency of root NO3− acquisition, the mechanisms involved in this systemic signaling remain largely unknown. Neither the sensors of the N status nor the long-distance signals transported to the roots have been identified. Furthermore, only a few molecular players that respond in the roots to these signals for controlling transcription of genes involved in NO3− acquisition have been characterized to date. One reason for this is the difficulty inherent in the experimental procedures required for specifically investigating systemic regulatory mechanisms (e.g. split-root or grafting experiments, and harvest and analysis of xylem or phloem sap). Because most transcriptome analyses of the responses to changes in N provision were performed in plants subjected to uniform treatments on the whole root system, it is not possible to determine whether the identified N-responsive genes are regulated by systemic signaling of the N status of the plant, or by local signaling of the external N availability (Ruffel et al., 2011). Nevertheless, recent studies have provided new insight that revealed highly original aspects of the systemic N signaling in Arabidopsis, and highlighted its unexpected level of complexity. In the following sections, we review the various hypotheses and new developments concerning the identity of the long-distance N signals and of the molecular players contributing to the transcriptional regulation of root NO3− acquisition.

Systemic signals of N status

Amino acids

A popular hypothesis is that the long-distance signals of the whole-plant N status are the amino acids transported by xylem and phloem saps. Both genetic and pharmacological evidence supports the conclusion that the feedback regulation of root NO3− acquisition involves the signaling role of organic N compounds resulting from NO3− assimilation. In Arabidopsis, mutants deficient in NIA genes or wild-type plants treated with tungstate or methionine sulfoximine (inhibitors of NO3− or NH4+ assimilation, respectively) display altered feedback regulation by high N of genes involved in root NO3− transport (Lejay et al., 1999; Zhuo et al., 1999), in amino acid biosynthesis (Gutierrez et al., 2008), and in lateral root emergence (Gifford et al., 2008). Accordingly, several amino acids (chiefly glutamine and glutamate) act as regulators of many of these genes when supplied exogenously (Zhuo et al., 1999; Nazoa et al., 2003; Gifford et al., 2008). The occurrence of a significant pool of amino acids cycling continuously between roots and shoots provided the basis for long-distance N signaling by these compounds (Cooper and Clarkson, 1989; Imsande and Touraine, 1994). Although tempting, this hypothesis has not received strong support over the recent period. First, changes in free amino acid contents of either roots or phloem sap did not always show an inverse correlation with changes in root NO3− uptake or expression of root NO3− transporters (Tillard et al., 1998; Krapp et al., 2011). Secondly, the molecular mechanisms of glutamate or glutamine sensing/signaling that have been deciphered in Arabidopsis (Forde et al., 2013; Chellamuthu et al., 2014) play no role in the regulation of root NO3− acquisition. Finally, genetic manipulation of key transporter genes of the amino acid permeases (AAP) family involved in phloem loading of amino acids did not result in the expected changes of the expression of N transport or assimilation genes (Zhang et al., 2015; Santiago and Tegeder, 2016). In pea, for instance, overexpression of PsAAP1 markedly stimulated phloem export of amino acids from leaves (~200%) and accumulation of these compounds in roots (~40%), but unexpectedly resulted in an up-regulation of NO3− transporter genes in the roots (Zhang et al., 2015). These observations are not consistent with the negative feedback loop model postulating that increased downward phloem transport of amino acids is the signal by which high N status of the plant represses root NO3− acquisition.

Nitrate

In addition to its role as a local signal molecule, NO3− is also involved in long-distance signaling. This is quite obvious when considering root-to-shoot signaling because in many species NO3− is not assimilated in the roots, and is translocated to the transpiring leaves, where it triggers local responses as in the roots (Sakakibara et al., 2006). However, two independent lines of evidence suggest that NO3− may also play a role in long-distance N signaling via the phloem to sink organs, including roots. First, several responses to systemic signaling of the N status recorded in split-root experiments were shown to be unaffected in NIA-deficient mutants as compared with wild-type plants (Zhang et al., 1999; Ruffel et al., 2011). Secondly, a very significant proportion of membrane NO3− transporters, namely NRT2.4, NRT2.5, NRT1.12 (NPF1.1), NRT1.11 (NPF1.2), and NRT1.7 (NPF2.13) are surprisingly involved in phloem loading of NO3− in the shoots (Fan et al., 2009; Kiba et al., 2012; Hsu and Tsay, 2013; Lezhneva et al., 2014).
This was unexpected because NO$_3^-$ represents only 1–10% of the total N concentration in the phloem sap, suggesting that it has a very limited nutritional role in sink organs (Kiba et al., 2012). Nevertheless, knock-out mutants of the three NRT1s display altered growth phenotypes, in response either to N starvation or to high NO$_3^-$ supply (Fan et al., 2009; Hsu and Tsay, 2013). These growth defects were attributed to a lowered phloem NO$_3^-$ remobilization/redistribution to sink leaves. If so, it is tempting to postulate that these defects are more predominantly due to the role of phloem NO$_3^-$ as a signal rather than as a nutrient.

mRNAs and small RNAs
Small RNAs (in particular miRNAs) have emerged over the past decade as major long-distance signals governing nutrient acquisition and utilization (mostly P and S) in various species, including Arabidopsis (Nath and Tuteja, 2016). Although many miRNAs were shown to respond to N starvation in Arabidopsis (Vidal et al., 2013a; Liang et al., 2015; Nguyen et al., 2015), their involvement in the regulation of root N acquisition has been documented for only a few of them, and mostly through post-transcriptional regulation of target genes. For instance, miR167 and miR393 regulate transcript abundance of the auxin response factor gene ARF8 and of the auxin receptor gene AFB3, respectively, to modulate root growth and development in response to N (Gifford et al., 2008; Vidal et al., 2010). In addition, miR169 targets members of the NFYA family of transcription factors and affects expression of root NO$_3^-$ transporters (Zhao et al., 2011). Further investigation of the N-responsive miRNAs is required to determine whether they relate to local or systemic signaling pathways, and if they are specific to N. Furthermore, with the possible exception of miR169 (Pant et al., 2009), their putative role as long-distance signals mobile in the phloem or the xylem remains elusive.

Interestingly, a recent large-scale analysis of mRNAs transported between various organs of heterografted Arabidopsis plants unraveled that 3630 genes can produce mobile mRNAs, highlighting the potential action of these mRNAs as long-distance signals (Thieme et al., 2015). Furthermore, among the 918 mobile mRNAs transported from root to shoot or vice versa, 91 display long-distance transport only in N-starved plants (as compared with P-starved or unstarved plants), whereas 212 are mobile only in unstarved plants. These data provide new prospects for identifying putative systemic signals of the N status of the plant that were not previously considered.

Peptides and proteins
Together with small RNAs, short peptides (10–20 residues) are now recognized as a major class of intercellular signals in plants (Matsubayashi, 2014). Two recent studies pointed out the importance of peptide signaling in both functional and developmental responses of Arabidopsis to changes in N availability.

First, Araya et al. (2014) demonstrated that several CLAVATA3/Endosperm surrounding region-related (CLE) peptides (namely, CLE1, -3, -4, and -7) are induced by N deficiency in root pericycle, and are perceived by the CLV1 receptor in phloem companion cells to repress growth and development of lateral roots. Although the CLE/CLV1 module apparently corresponds to a local regulatory pathway, localization of CLV1 in the phloem may connect its action with as yet unknown shoot-borne systemic signals. Secondly, Tabata et al. (2014) identified C-terminally encoded peptides (CEPs) as major components of an upward long-distance signaling pathway informing the shoot of the external availability of NO$_3^-$.

Among the 15 CEP genes present in the Arabidopsis genome, 7 (CEP1, 3, 5, 6, 7, 8, and 9) are induced in the roots within 6 h after N removal from the medium. Induction of CEP genes in the roots by N starvation is associated with an increased concentration of CEP peptides in the xylem sap as compared with high NO$_3^-$ supply conditions. CEPs are perceived in the shoot by a pair of CEP receptors (CEPR1 and CEPR2, leucine-rich repeat receptor kinases). In split-root experiments, the double cepr1 cepr2 mutant is unable to trigger the compensatory up-regulation of the expression of NO$_3^-$ transporter genes (NRT2.1, NRT3.1/NAR2.1, and NRT1.1) in response to N starvation on one side of the split-root system, whereas exogenous supply of CEP1 peptide to wild-type plants on one side of the split-root system promotes this up-regulation even though both sides are provided with ample NO$_3^-$ supply. Grafting experiments between the wild type and the cepr1 cepr2 mutant confirm that CEPR1/CEPR2 in the shoot, and not in the roots, are responsible for the CEP-mediated responses. Collectively, these data support the model that CEP synthesis in the roots, CEP translocation to the shoot via the xylem, and CEP perception by CEPR1/CEPR2 in the shoot constitute a key signaling mechanism by which the roots rapidly inform the shoot of shortage of N supply, and allow the systemic response of the plant to N limitation. How CEP perception by CEPR1/CEPR2 in the shoot generates a downward systemic signal that in turn regulates expression of root NO$_3^-$ transporter genes remains to be elucidated (Tabata et al., 2014).

Up to now, no protein has been identified as a mobile signal involved in the regulation of root N acquisition by the N status of the plant. However, a recent study showed that this is the case for regulation by the C status, which relies on the HY5 transcription factor that is transported from shoot to roots to control expression of the NRT2.1 NO$_3^-$ transporter gene and root NO$_3^-$ uptake in response to changes in the illumination of the plant (Chen et al., 2016).

Hormones
Several hormones [auxin, abscisic acid (ABA), and cytokinins (CKs)] have been proposed to contribute to the long-distance signaling of the N status of the plant (Forde, 2002; Nacry et al., 2013).

For auxin, an inverse relationship is reported between the N status of the plant and downward translocation of the hormone from the shoot to the roots (de Jong et al., 2014). Higher shoot-to-root export of auxin in response to N limitation is expected to promote root growth and branching, but the action of auxin on the expression of root NO$_3^-$ transporter genes is less clear, as both inhibitory (for NRT2.1) and
stimulatory (for \(\text{NRT1.1}/\text{NPF6.3}\)) effects have been reported (Guo et al., 2003; Gan et al., 2005).

ABA was shown to contribute to a systemic signaling pathway responsible for the inhibition of lateral root growth in response to very high NO\(_3\) supply (50 mM) (Signora et al., 2001). More recently, Léran et al. (2015) highlighted the role of ABI2 (a PP2C phosphatase regulated by ABA) in controlling NRT1.1/NPF6.3-dependent NO\(_3\) regulation of gene expression (\(\text{NRT2.1}\)), possibly through interaction with CIPK23/CBL1 that phosphorylates NRT1.1/NPF6.3. These observations create a direct link between ABA and NO\(_3\) signaling, but it is not known whether ABA actually acts as a long-distance signal of N status of the plant.

CKs are also tightly linked with N nutrition and signaling. Indeed, NO\(_3\) supply stimulates CK synthesis in the roots, mainly through NRT1.1/NPF6.3-dependent induction of the isopentenyl transferase \(\text{IPT3}\) gene (Sakakibara et al., 2006). Therefore, NO\(_3\)-dependent CK root-to-shoot transport is considered as a long-distance signaling mechanism allowing the shoot to tune its growth rate rapidly as a function of NO\(_3\) provision (Krouk, 2016). Moreover, two independent lines of evidence suggest that CKs may also act as shoot-to-root long-distance N signals. First, CKs are potent inhibitors of the expression of root NO\(_3\)-transporter genes, such as \(\text{NRT2.1}\) (Kiba et al., 2011). Secondly, part of, but not all, the responses to systemic N signaling found in split-root plants are lost in the triple mutant \(\text{ipt3.5.7}\) strongly impaired in CK biosynthesis (Ruffel et al., 2011). Interestingly, a later study suggested the occurrence of two separate systemic signaling pathways (Ruffel et al., 2016). One, CK dependent, is triggered by roots experiencing NO\(_3\) deprivation, and is consequently referred to as N-demand signaling. The other one, CK independent, is triggered by roots experiencing high NO\(_3\) supply, and is consequently referred to as N-supply signaling. Besides these observations, the specificity of CK signaling versus N remains unclear. Indeed, CKs repress not only NO\(_3\) transporter genes, but also phosphate or iron transporters genes (Franco-Zorrilla et al., 2002; Seguëla et al., 2008). This may indicate that CK-dependent long-distance signaling is operative for controlling root acquisition of several nutrients, and may therefore correspond to a systemic regulatory mechanism activated by changes in growth rather than by changes in specific nutrient status (Seguëla et al., 2008).

Local regulators of the transcriptional regulation exerted by the plant N status

In addition to its role in the induction of NO\(_3\)-related genes in the PNR, NRT1.1 has also been surprisingly associated with the signaling pathway triggering the opposite effect, namely the feedback repression of some of these genes, such as \(\text{NRT2.1}\) and \(\text{NAR2.1}\), in response to high N supply (Muñoz et al., 2004; Krouk et al., 2006). Indeed, in contrast to wild-type plants, several \(\text{nrt1.1}\) (\(\text{chl1}\)) mutants showed a lack of down-regulation of \(\text{NRT2.1}\) expression under repressive high N conditions. This effect is due to the relief, in \(\text{chl1}\) mutants, of a local repression exerted by NO\(_3\), which is different from the systemic feedback down-regulation by the N status of the whole plant. These data indicate that repression of \(\text{NRT2.1}\) by high N requires the concurrent action of two independent regulatory mechanisms: the systemic feedback repression by high N status of the whole plant, and the NRT1.1-dependent local repression by high NO\(_3\). This also suggests that the form of N that can be acquired by the roots matters for the regulatory mechanisms ensuring N homeostasis, and that specific ‘NO\(_3\)-demand’ signaling pathways may co-exist with more general N-demand pathways (Krouk et al., 2006). The mechanisms explaining the dual effect of NRT1.1 on \(\text{NRT2.1}\) expression (induction within the PNR, and repression afterwards at high NO\(_3\) supply) remain uncharacterized. However, the investigation of different point mutants of \(\text{NRT1.1}\) indicated that these mechanisms are genetically independent for the two effects. Indeed, both the NRT1.1\(^{\text{T101A}}\) mutant (in which T101 phosphorylation is prevented) and the NRT1.1\(^{\text{T492L}}\) mutant are able to trigger the induction of \(\text{NRT2.1}\), but not its feedback repression, whereas the NRT1.1\(^{\text{T101D}}\) mutant (mimicking constitutive phosphorylation) is fully active in the feedback repression but mediates only a lowered induction (Ho et al., 2009; Bouguyon et al., 2015). This suggests that the non-phosphorylated and phosphorylated forms of NRT1.1 are specifically involved in the PNR and in the feedback repression by high NO\(_3\), respectively.

ARABIDOPSIS NITRATE REGULATED 1 (ANR1) was the first transcription factor characterized with a role in response to N (Zhang and Forde, 1998). ANR1 promotes lateral root development in NO\(_3\)-rich patches, in an NRT1.1-dependent manner (Remans et al., 2006). However, ANR1 target genes in the NRT1.1 signaling pathway remain to be identified. The TEOSINTE BRANCHED1/CYCLO-IDEA/PROLIFERATING CELL FACTOR1-20 (TCP20) transcription factor also promotes root foraging in response to N fluctuations (Guan et al., 2014). In split-root experiments, tcp20 mutants show a reduction of root growth in the N-rich zone, as well as an enhanced growth in the N-starved zone, resulting in a lack of N sensitivity of the root system. Furthermore, TCP20 binds to \(\text{NIA1}, \text{NRT1.1}, \text{and NRT2.1}\) promoters (Fig. 1), suggesting that it may also have a role in the transcriptional regulation of NO\(_3\) uptake and assimilation.

The transcription factors LATERAL ORGAN BOUNDARY DOMAIN 37/38/39 (LBD37/38/39) were shown to regulate many N-responsive genes (Rubin et al., 2009). All three LBD genes are induced by NO\(_3\) (and to a lower extent by NH\(_4^+\) or glutamine) and act as repressors of several NO\(_3\) transporter genes (\(\text{NRT1.1}, \text{NRT2.1}, \text{NRT2.2}, \text{and NRT2.5}\)), as well as of genes of NO\(_3\) assimilation (\(\text{NIA1}, \text{NIA2}, \text{and GLN1.4}\)), indicating that they may be involved in the feedback down-regulation by high N supply. Interestingly, LBD39 induction by high N supply (10 mM NH\(_4\)NO\(_3\)) was found to depend on NRT1.1 and, more precisely, on the phosphorylated form of NRT1.1 (Bouguyon et al., 2015). Thus, these studies may suggest that at least LBD39 acts downstream of NRT1.1 to trigger repression of \(\text{NRT2.1}\) expression, and possibly of other N-regulated genes, in response to the local repression exerted by high NO\(_3\) supply. Transcriptome
analysis in response to combinatorial treatments of light (L) and N reveals that bZIP1 is induced by high N supply and repressed by L, but N and L act independently to control bZIP1 mRNA accumulation (Obertello et al., 2010). Moreover, bZIP1 mutation affects both N and L regulations and triggers genome-wide deregulation of these signals. Thus bZIP1 plays a large role in control of gene expression by co-ordinating L and N signaling. The role of bZIP1 in response to N was analyzed by TARGET coupled with ChiP; this analysis defined different modes of action for bZIP1 but also a dual mode of regulation (activator and repressor) (Para et al., 2014). The rapid N responders such as NRT2.1, NRT3.1, or LBD38/39 are induced by bZIP1 in a ‘hit and run’ transcription model, where bZIP1 interacts transiently to activate transcription of targets (hit) but the transcription continues after transcription factor dissociation (run).

To find additional genes involved in the regulation of NRT2.1 expression by N status, a genetic screen was performed using the pNRT2.1::LUC transcriptional reporter. This led to the isolation of three mutants, called hni (for high nitrogen insensitive), impaired in the feedback repression of NRT2.1 by high N supply (Girin et al., 2010). Split-root experiments revealed that down-regulation of pNRT2.1::LUC expression in the low NO3- side of the split-root system in response to high N supply on the other side was impaired in all three mutants. This highlighted a key role for the corresponding genes in either the systemic signaling of the N status of the plant, or in the local response to this signaling in the roots. Cloning of the mutated gene in hni9-1 unraveled that it corresponds to INTERACT WITH SPT6 (IWS1), encoding a ubiquituous nuclear protein involved in chromatin remodeling and transcriptional elongation in yeast and animals (Widiez et al., 2011). In Arabidopsis, IWS1 is also involved in the brassinosteroid response, through interactions with chromatin marks (Li et al., 2010). Interestingly, mutation in RTF1/VIP5, a predicted partner of HN19, also affects the regulation of NRT2.1. RTF1/VIP5 is a core member of the PAF1 complex that regulates the chromatin state during transcription, suggesting the important contribution of chromatin-based mechanisms in the transcriptional response to high N (Widiez et al., 2011). Further investigation showed that the systemic feedback repression of NRT2.1 by high N supply is correlated with an enrichment of trimethylation of the Lys27 of the histone H3 (H3K27me3) at the NRT2.1 locus, and that both responses are suppressed in the hni9-1 mutant (Widiez et al., 2011). H3K27me3 is a repressive chromatin mark mainly associated with genes that are transcriptionally repressed (Roudier et al., 2011). Several studies have suggested that chromatin modifications could play an important role in the response to several abiotic constraints, including H3K27me3 variations under drought (Smith et al., 2010; Sani et al., 2013; Brzezinka et al., 2016).

However, the data concerning N nutrition are scarce, and whether transcriptional repression of NRT2.1 by high N supply is actually due to an increase in the repressive chromatin mark H3K27me3 at the NRT2.1 locus mediated by HN19/IWS1 remains to be determined.

Recently, an elegant systems biology approach for N use efficiency (NUE) in Arabidopsis predicted BTB AND TAZ DOMAIN PROTEIN 2 (BT2) as a central gene of the NUE network under low N status (Araus et al., 2016). Analyses of the bt1/bt2 double mutant and the BT2 overexpressor revealed a role for BT2 in the repression of NRT2.1 and NRT2.4 under limiting NO3- conditions, where these two NO3- transporters play their physiological roles, impacting NO3- uptake and ultimately NUE. This study interestingly suggests that gene repression and activation act together to control NRT2.1 and NRT2.4 transcript levels, even in their preferential condition for expression.

Several members of the NUCLEAR FACTOR Y SUBUNIT A gene family of transcription factors (namely NFYA2, 3, 5, and 8) were found to be markedly induced by N starvation (Zhao et al., 2011). These results are consistent with other studies indicating that NFYA genes are predicted targets of miR169 (Li et al., 2008). Indeed, the relative abundance of most miR169s (14 members in Arabidopsis) decreases in roots in response to N starvation (Zhao et al., 2011; Liang et al., 2012). In rapeseed, miR169m is much less abundant in phloem sap of N-depleted as compared with N-replete plants (Pant et al., 2009). Interestingly, constitutive overexpression of miR169a (the predominant form of miR169 in Arabidopsis) leads to hypersensitivity to N limitation and down-regulation of NRT2.1 expression at low NO3- supply (Zhao et al., 2011). Therefore, it is tempting to postulate that the miR169–NFYA module may play a significant role in systemic regulation of root NO3- acquisition in response to N limitation. However, although the NRT2.1 promoter contains one cis-element putatively recognized by NFYA transcription factors, the mechanism involved in the regulation of NRT2.1 expression by NFYAs is still unknown. Furthermore, the specificity of the action of NFYAs towards N signaling is unclear as these proteins are also associated with the response to other stresses such as drought (Li et al., 2008).

Calcium was reported to act as a secondary messenger in the PNR (Riveras et al., 2015), and there are some hints that it may also play a role in other N signaling pathways. In particular, the calcineurin B-like protein CBL7 gene is markedly induced by N starvation in Arabidopsis roots, and its loss-of-function mutation results in a strongly attenuated up-regulation of the two high-affinity NO3- transporter genes NRT2.4 and NRT2.5 (Ma et al., 2015). This suggests that CBL7 may be an upstream component of the signaling pathway involved in the N starvation response of NRT2.4 and NRT2.5. Interestingly, induction of CBL7 by N starvation seems to be specifically triggered by the absence of NO3-, providing additional evidence for the occurrence of specific NO3-–demand signaling pathways (see the paragraph discussing NO3- as a systemic signal of N status).

An integrative view of transcriptional responses to variations in N availability

Ensuring optimal responses to N variations is certainly crucial for plant growth, development, and adaptation to local...
environments. As we discussed above, plant root responses to N fluctuations involve a combination of responses, each of them being already complex and determined by multiple signaling pathways: sensing, long-distance signaling, local gene expression changes, cell type-specific expression profiles, short-term and long-term kinetic changes, influence of specific N forms, co-ordination with or influence of variations of carbon and other nutrients, etc. Studying the puzzle of N signaling therefore requires an effort of integration, which is not straightforward as most molecular genetics approaches are inherently simplistic, in order to decipher specific regulatory modules.

Masters, commanders, and multipurpose transcription factors

Given the expected complexity of the mechanisms of N signaling in plants, it is likely that only a small part of the underlying regulators directly involved in modulating genome expression (transcription factors and chromatin regulators) have been identified to date (Table 1; Fig. 1). However, some of these transcription factors already appear to be master regulators, with a central role in a wide range of N responses under various N conditions. NLPs are probably the most influential ones. In agreement with the N-starved phenotype of nlp7 mutants, NLP7 is required to reach the maximal transcript levels of many genes involved in N sensing, transport, and assimilation (Castaings et al., 2009; Marchive et al., 2013). NLP7 function is directly modified by NO3, and the PNR largely depends on NLP7, but NLP7 is also required to reach the maximal level of expression of N-responsive genes in an N-rich environment (AM, unpublished results). Furthermore, NLP7 was reported to bind to and to regulate 91 No3-regulated genes, including several genes encoding signaling proteins (Marchive et al., 2013). This suggests that

Table 1. Transcription factors identified in Arabidopsis involved in N responses

We indicate the name of each transcription factors, the corresponding AGI, the molecular family, the response in which each transcription factor is involved, the expression profile in the root when known, the potential to be transcriptionally responsive to N, the direct genomic targets when known (validated by ChiP or EMSA), and the reference in which each transcription factor has been described.

<table>
<thead>
<tr>
<th>Name</th>
<th>AGI</th>
<th>Molecular family</th>
<th>Role in N responses</th>
<th>Root expression profile</th>
<th>Transcriptionally responsive to N</th>
<th>Direct genomic targets in N responses</th>
<th>Described in</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANR1</td>
<td>AT2G14210</td>
<td>MADS box</td>
<td>Lateral root</td>
<td>Lateral root</td>
<td>Yes</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>development</td>
<td>(primordia, base and apex), stele</td>
<td></td>
<td></td>
<td>Zhang and Forde (1998); Remans et al. (2006)</td>
</tr>
<tr>
<td>bZIP1</td>
<td>AT5G49450</td>
<td>bZIP</td>
<td>C/N status</td>
<td>Unknown</td>
<td>Yes</td>
<td>Hundreds of genes, including NRT2.1 and LBD38</td>
<td>Hundreds of genes, including NRT1.1, NRT2.1, and NIA1</td>
</tr>
<tr>
<td>ARF8</td>
<td>AT5G37020</td>
<td>B3 type</td>
<td>Lateral root</td>
<td>Pericycle, root cap</td>
<td>Yes</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td>NLP7</td>
<td>AT4G24020</td>
<td>RWP RK</td>
<td>Primary response to NO3, N status</td>
<td>Stele, root hair, endodermis, root tip</td>
<td>No</td>
<td>Hundreds of genes, including NRT1.1, NRT2.1, and NIA1</td>
<td>Unknown</td>
</tr>
<tr>
<td>LBD37</td>
<td>AT5G67420</td>
<td>ASL LBD</td>
<td>N status</td>
<td>Unknown</td>
<td>Yes</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td>LBD38</td>
<td>AT3G49940</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LBD39</td>
<td>AT4G37540</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPL9</td>
<td>AT2G42200</td>
<td>SBP</td>
<td>Primary response to NO3, N status</td>
<td>Unknown</td>
<td>Yes</td>
<td>Unknown</td>
<td>Unkn</td>
</tr>
<tr>
<td>HN9 (WIS1)</td>
<td>AT1G32130</td>
<td>TFII</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Krouk et al. (2010)</td>
</tr>
<tr>
<td>NAC4</td>
<td>AT5G07680</td>
<td>NAM ATAF CUC</td>
<td>Lateral root</td>
<td>Stele, root cap</td>
<td>No</td>
<td>NRT1.1, NRT2.1, and NIA1</td>
<td>Vidal et al. (2013b)</td>
</tr>
<tr>
<td>TCP20</td>
<td>AT3G27010</td>
<td>TCP</td>
<td>Lateral root</td>
<td>Stele, root cap</td>
<td>No</td>
<td>NRT1.1, NRT2.1, and NIA1</td>
<td>Unkn</td>
</tr>
<tr>
<td>TGA1</td>
<td>AT5G65210</td>
<td>bZIP</td>
<td>Lateral root</td>
<td>Pericycle</td>
<td>Yes</td>
<td>NRT2.1 and NRT2.2</td>
<td>Hervé et al. (2009); Guan et al. (2014)</td>
</tr>
<tr>
<td>TGA4</td>
<td>AT5G10030</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Alvarez et al. (2014)</td>
</tr>
<tr>
<td>HRS1</td>
<td>AT1G13300</td>
<td>GARP G2-LIKE</td>
<td>NO3–phosphate</td>
<td>Unknown</td>
<td>Yes</td>
<td>RAP2-7, LEP, NF-YBS, AT3G02080, QQT1, and CAX9</td>
<td>Medici et al. (2015)</td>
</tr>
<tr>
<td>NRG2</td>
<td>AT3G60320</td>
<td>Putative bZIP</td>
<td>Primary response to NO3, N status</td>
<td>Stele, root tip</td>
<td>No</td>
<td>Unknown</td>
<td>Xu et al. (2016)</td>
</tr>
<tr>
<td>BT1</td>
<td>AT5G63160</td>
<td>TAZ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unknown</td>
</tr>
<tr>
<td>BT2</td>
<td>AT3G48360</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Araus et al. (2016)</td>
</tr>
<tr>
<td>NLP8</td>
<td>AT2G43500</td>
<td>RWP-RK</td>
<td>NO3–induced</td>
<td>Unknown</td>
<td>No</td>
<td>CYP707A2</td>
<td>Yan et al. (2016)</td>
</tr>
</tbody>
</table>
NLP7 is not only a master but also a commander, directly controlling many downstream elements of the N transduction pathways. More generally, the members of the NLP transcription factor family, not only NLP7, appear to be key regulators of several N responses beyond the regulation of root N acquisition (Castangis et al., 2009; Konishi and Yanagisawa, 2013; Marchive et al., 2013; Yan et al., 2016). NLP8 is, for instance, required to orchestrate transcriptional reprogramming in order to induce NO3−-dependent seed germination (Yan et al., 2016). NLP8 regulates known NO3−-sensitive genes such as NIA1 or NIR, but also specific targets such as the ABA catabolic gene CYP707A2. NLPs are therefore major transcription factors that regulate different physiological NO3−-dependent responses in the plant, suggesting that other transcription factors may act together with NLPs to provide a degree of specificity for each response. In addition to NLP7, NRG2 is also a good candidate to be a master regulator of N responses, as NRG2 functions as well in the PNR and the feedback response to high N (Xu et al., 2016). Comparison of nrg2 and nlp7 transcriptomes from NO3−-treated roots demonstrates a large overlap of NRG2- and NLP7-regulated genes, which, in addition to the physical interaction between the two proteins, strongly suggests co-operation between these two factors in the response to NO3−. NLP7 and NRG2 are therefore required in several N conditions, suggesting that other factors should act in order to target the regulation of specific subsets of genes. The BTB genes, and in particular BT1/BT2, may also be a good candidate for master regulators of N responses, as the effect of BT1/BT2 on NRT2.1 and NRT2.4 gene expression is visible at both low and moderate NO3− concentrations. More data are needed to better appreciate the global role of BT1/BT2 in N responses but, remarkably, bt1/bt2 and nlp7 or nrg2 show opposite effects on NRT2.1 expression, and it would be interesting to investigate how these components interact. Apart from these regulators, the other identified transcription factors seem to have a more restricted role, only associated with specific conditions. The implication of LBD37/38/39 in N responses remains elusive. These transcription factors are induced by NO3− in an NLP7-dependent manner (Rubin et al., 2009; Marchive et al., 2013), but are negative regulators of NRT2.1 under NO3−-replete conditions (Rubin et al., 2009). Furthermore, at least LBD39 is induced by NRT2.1 under high NH4NO3 nutrition, in contrast to NRT2.1 (Bouguyon et al., 2015). This suggests that LBD37/38/39 could be involved in a pathway specific for high NO3− signaling. HN19 is one of the only transcriptional regulators found to contribute to the transcriptional feedback regulation by high N status on NO3− transporter genes and especially on NRT2.1 (Widiez et al., 2011), and its action seems strictly confined to N-rich environments, as no effect has been found under low N or in the PNR. TGA1 and TGA4 are induced by NO3−, and consequently regulate almost exclusively NO3−-responsive genes, suggesting that TGA1/TGA4 specifically regulates a subset of the genomic response to NO3− (Alvarez et al., 2014). However, TGA1/TGA4 may have the interesting characteristic of possibly regulating both root NO3− uptake and root development (Alvarez et al., 2014). TCP20 is another transcription factor with promising potential in the search for multipurpose transcriptional regulators. TCP20 plays a key role in NO3− root foraging by controlling lateral root development under heterogeneous environments (Guan et al., 2014). Accordingly, TCP20 binds to the NRT1.1 promoter, and part of the TCP20 phenotype can be linked to NRT1.1-dependent regulation of lateral root development. However, TCP20 also binds to NRT2.1 and NIA1 promoters. If NRT2.1 might also have a role in root development, concomitant binding to the NIA1 promoter suggests that TCP20 may also have a function in the regulation of NO3− uptake and assimilation. The integrative N response driven by TCP20 remains to be further analyzed, in agreement with long-distance and local mechanisms.

Lost in puzzling

The above sections show that many pieces of the puzzle gathering together the mechanisms of transcriptional control of root N acquisition are now identified. These include both local and long-distance putative signals, molecular components of the regulatory pathways such as transcription factors, and their targets such as root transporter genes. However, looking at this puzzle, several paradoxes emerge, illustrating the still fragmentary nature of our knowledge.

For instance, concerning the regulation by the N status of the plant, it is striking to see that with the possible exception of the miR169–NFYA module, there is no connection between the putative long-distance signals of N status and the molecular regulators acting in the roots in response to systemic N signaling. Indeed, none of these regulators was shown to be itself regulated or activated by any of the candidate long-distance signals.

Also, one would expect that the regulators and their targets share some common expression pattern, with, in particular, consistent tissue localization. However, this does not seem obvious from the available data. For instance, NRG2 interacts physically with NLP7 in the NRT1.1 signaling pathway during the PNR, in order to induce NO3−-responsive genes such as NIA1, NIR, and NRT2.1 (Xu et al., 2016). However, NRG2 expression in roots is restricted to vascular tissues, and several studies have demonstrated a strict outlying expression profile for NRT2.1, in cortical and epidermal cells (Fig. 2). Likewise, TGA1 and TGA4, which bind to NRT2.1 and NRT2.2 loci and are required to up-regulate NRT2.1 transcript levels in response to NO3−, are thought to be expressed in pericycle tissue in response to NO3− (Alvarez et al., 2014) (Figs 1, 2). Interestingly, cell sorting data suggest that NRT2.1 and NRT2.2 are indeed induced in pericycle cells in response to NO3− treatment (Alvarez et al., 2014). These findings lend support to the possibility that the steady-state expression profile and transient induction of NO3−-responsive genes can be spatially disconnected, at least in the case of NRT2.1 and NRT2.2. This would be an explanation for the regulation of NRT2.1 and NRT2.2 by TGA1/TGA4, even if mobility of transcription factors, also recently exemplified (Chen et al., 2016), cannot be ruled out.
Interestingly, many transcription factors involved in N response display a preferential expression in vascular or perivascular tissues (Fig. 2). This suggests that root vascular and perivascular tissues may be more central in N responses, possibly to interact with systemic signals of N status, and to allow co-ordination of diverse responses involving uptake, assimilation, or lateral root development.

Future prospects

The study of transcriptional mechanisms of N response in plants has led to the characterization of relatively few players since the identification of the first transcription factor 20 years ago (Zhang and Forde, 1998). Indeed N transcriptional responses appear to be very complex, and the contribution of systems biology approaches has recently allowed the capture of several more regulators (Gutiérrez, 2012; Canales et al., 2014). In order to go further, global approaches need to be fed with more extensive functional studies, and the latter should be subjected to large-scale analysis, leading to a back and forth, iterative process. Furthermore, recent studies demonstrated that responses to N are integrated with responses to other environmental stimuli (Ruffel et al., 2014; Li et al., 2016), and future challenges will be to identify intersection of multiple responses that the analyses of each single response cannot identify.

The significance of the molecular mechanisms that have been identified has to be tested now in natural or field conditions. For instance, the PNR, or remodeling of the root architecture are thought to provide adaptive value to plants (Nacry et al., 2013). However, these assumptions may be a little bit hasty, as these responses have not been properly tested yet in natural conditions, most probably because of the experimental challenge to examine them in the natural setting. To meet this goal, a set of representative mutants (nlp7, tcp20, tga1tga4, chill, etc.) may be introduced in high-throughput platforms that allow very precise phenotyping measurements under contrasting environments (Tisné et al., 2013). This will be a first step to reveal the role of these regulators in adaptive responses under nutritional variations.

Acknowledgements

Research by the authors in relation to the topic of this review is supported by a grant from the National Agency for Research (ANR) (grant ANR-14-CE19-0008 IMANA) and from INRA BAP department (ACSES).

Vidal EA, Moyano TC, Riveras E, Contreras-Lopez O, Gutiérrez RA. 2013b. Systems approaches map regulatory networks downstream of the...

Zhang L, Garneau MG, Majumdar R, Grant J, Tegeder M. 2015. Improvement of pea biomass and seed productivity by simultaneous increase of phloem and embryo loading with amino acids. The Plant Journal 81, 134–146.

Zhuo D, Okamoto M, Vidmar JJ, Glass AD. 1999. Regulation of a putative high-affinity nitrate transporter (Nrt2;1At) in roots of Arabidopsis thaliana. The Plant Journal 17, 563–568.
Figure 1.5 : Organisation générale de la chromatine.
2. Régulation de l’expression génique par la chromatine

2.1. Définition de chromatine

L’ADN renferme l’ensemble des informations nécessaires au fonctionnement d’un organisme. Afin de contrôler l’information génétique, l’ADN est sujet à différents niveaux de compaction (Figure1.5). Le premier est une association de deux tétramères composés des histones H2A, H2B, H3, H4 autour duquel s’enroulent 147 paires de bases (pb) de l’ADN, formant ainsi le nucléosome, qui correspond au premier niveau de la chromatine (ADN et protéines associées) (Figure1.5). On a longtemps considéré que la chromatine avait uniquement pour fonction la condensation de l’ADN, mais on sait maintenant que la chromatine contribue à modifier la façon dont la cellule interprète la séquence d’ADN. Ces régulations chromatiniennes sont cruciales au cours de la croissance et du développement, puisqu’elles permettent notamment le maintien des fonctions de chaque type cellulaire qui contiennent un génome identique. Ayant un rôle fondamental dans l’expression du génome, le disfonctionnement des régulations chromatiniennes peut entraîner des effets néfastes, chez les plantes comme chez les animaux (Kinoshita et al. 2001 ; Margueron & Reinberg 2010). Les régulations chromatiniennes font intervenir de nombreux types de modifications chimiques qui peuvent avoir lieu à différents niveaux (Tableau 1.1).

Ensuite, les histones formant le nucléosome peuvent également être modifiées à différents niveaux. Elles peuvent être remplacées par d’autres histones dont la séquence protéique varie ponctuellement, nommées variants d’histones, qui vont impacter notamment la stabilité du nucléosome et donc l’accessibilité de l’ADN. Par exemple, le variant H2A.Z peut être déposé en 5’ des gènes pour promouvoir la transcription et présente un rôle antagoniste à celui de la méthylation de l’ADN (Zilberman et al. 2008).
Tableau 1.1 : Illustration des principales modifications chromatiniennes, de la région génomique ciblée et de leur corrélation avec la transcription.

<table>
<thead>
<tr>
<th>Niveau</th>
<th>Cible</th>
<th>Type de modification</th>
<th>Région génomique ciblée</th>
<th>corrélation avec la transcription</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADN</td>
<td>ADN</td>
<td>5mC</td>
<td>éléments transposables</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5mC</td>
<td>corps du gène</td>
<td>+/-</td>
</tr>
<tr>
<td>Variant d'histone</td>
<td>H3</td>
<td>H3.1</td>
<td>éléments transposables</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H3.3</td>
<td>promoteur à corps du gène</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>H2A</td>
<td>H2A.Z</td>
<td>5' et 3' du gène</td>
<td>+/-</td>
</tr>
<tr>
<td>Modifications</td>
<td>H3K4</td>
<td>me1</td>
<td>corps du gène et 3'</td>
<td>+</td>
</tr>
<tr>
<td>post-traductionnelles</td>
<td></td>
<td>me2</td>
<td>promoteur et 5' du gène</td>
<td>+</td>
</tr>
<tr>
<td>des histones</td>
<td></td>
<td>me3</td>
<td>promoteur et 5' du gène</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>H3K9</td>
<td>me1</td>
<td>éléments transposables</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>me2</td>
<td>éléments transposables</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>me3</td>
<td>5' et 3' du gène</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>H3K27</td>
<td>me1</td>
<td>éléments transposables et régions intergéniques</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>me2</td>
<td>éléments transposables et gènes</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>me3</td>
<td>promoteur à 3' du gène</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>H3K36</td>
<td>me2</td>
<td>corps du gène</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>me3</td>
<td>corps du gène</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>H3K9/14/18/23/27/56</td>
<td>ac</td>
<td>TSS et 5'</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>H4R3</td>
<td>me2</td>
<td>promoteur proximal</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>H4K20</td>
<td>me1</td>
<td>éléments transposables</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>H4K5/8/12/16</td>
<td>ac</td>
<td>TSS et 5' du gène</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>H2AK119</td>
<td>Ub</td>
<td>5' du gène</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>H2BK143/146</td>
<td>Ub</td>
<td>corps du gène</td>
<td>+</td>
</tr>
</tbody>
</table>
Les histones peuvent également subir des modifications post-traductionnelles sur leur queue N terminale, qui selon le résidu et le type de modifications, va favoriser ou limiter la transcription. Divers types de modifications post-traductionnelles (acétylation, ac ; méthylation, me ; ubiquitinylation, Ub ; phosphorylation, P) impactent différemment l’expression des gènes et de nombreux résidus (lysine, K ; arginine, R ; sérines, S ; thréonine, T) peuvent être modifiés sur chaque histone (Kouzarides, 2007). De plus, le degré de méthylation d’un même résidu arginine ou lysine peut être multiple (mono-, di- voire tri-méthylé pour les lysines) et n’impacte pas de la même façon l’expression des gènes. Par exemple, un enrichissement en tri-méthylation sur la lysine 9 de l'histone H3 (H3K9me3) est retrouvé aux loci de gènes transcriptionnellement actifs, alors que l'enrichissement en H3K9me2 est associé à la répression des éléments transposables (Roudier et al. 2011). Ainsi, chaque degré de méthylation d'un même résidu constitue une marque chromatinienne différente. De ce fait, un très large panel de modifications existe (Tableau 1.1). Nous nous focaliserons par la suite sur les modifications post-traductionnelles des queues d'histones.

Pour un locus donné, toutes les modifications chromatiniennes ne ciblent pas la même région. L'acétylation des K, présente une distribution similaire quelle que soit la K, avec un enrichissement au niveau du site d'initiation de la transcription et en 5' des gènes transcriptionnellement actifs. À l'inverse, les régions ciblées par la méthylation des K dépendent du degré de méthylation et du résidu modifié. Également associée aux gènes transcriptionnellement actifs, on retrouve H3K4me3 au niveau du promoteur et en 5' du gène, alors que H3K36me3 est enrichie dans le corps du gène (Wang et al. 2016). Au niveau des séquences riches en gènes, un large panel de marques "activatrices" (corrélées à une transcription élevée) existe, tandis que peu de marques "répressives" (corrélées à une transcription faible) sont observées. Parmi ces dernières, H3K27me3 couvre toute la séquence génique et présente une fonction antagoniste aux H3K4me3 et H3K36me3 dans de nombreux modèles (Jiang et al. 2008 ; Yang et al. 2014), et dans une moindre mesure, H3K27me2. H2AK119Ub cible également la partie 5' des gènes peu actifs et est étroitement liée à l'enrichissement en H3K27me3 (Bratzel et al. 2010 ; Yang et al. 2013 ; Blackledge et al. 2014 ; Cooper et al. 2014 ; Kalb et al. 2014).

Nous avons présenté jusqu'ici chaque marque individuellement en fonction de l'état transcriptionnel des régions ciblées. Néanmoins, c’est en général la somme de différentes modifications ayant la même fonction, exercées à un locus donné, qui constitue la régulation chromatiniennente. On parle alors d'état chromatinien, qui peut être favorable ou répresseur pour
Figure 1.6 : Représentation des quatre états chromatiniens obtenus par Roudier et al. (2011) en fonction des modifications chromatiniennes qui les composent, des régions ciblées ainsi que leur impact sur la transcription.

L’analyse de 12 modifications chromatiniennes révèle quatre états chromatiniens (*Chromatin States*, CS1 à CS4) distingués par les marques chromatiniennes qui les composent (A), leur distribution sur le génome (B) et leur corrélation à l’état transcriptionnel des gènes qu’ils ciblent (C).
la transcription. Pour un même locus, cet état peut varier d’un tissu à l’autre, voire même d’une cellule à une autre. Ainsi, différents états chromatiniens contrôlent l’expression d’un unique génome.

2.2. Notion d’états chromatiniens

Chez les animaux et la levure, de nombreuses études épigénomiques intégratives ont révélé que malgré le très grand nombre de modifications possibles, il existe un nombre limité d’états chromatiniens fonctionnellement différents. Chaque état correspond à une certaine combinaison de marques (Levure : Liu et al. 2005 ; C. elegans : Gerstein et al. 2010 ; Drosophile : Filion et al. 2010 ; Kharchenko et al. 2011 ; Homme : Ernst & Kellis 2010). Chez Arabidopsis, des analyses de la distribution d’un nombre restreint de modifications chromatiniennes (12 à 16) à l’échelle du génome ont révélé que pour les modifications considérées, le génome est également organisé en un nombre limité d’états chromatiniens.

Une première analyse de 12 modifications chromatiniennes couvrant 90 % du génome a révélé qu’il existe, chez Arabidopsis, quatre états chromatiniens qui peuvent être distingués par leur distribution sur le génome et leur impact transcriptionnel (Figure 1.6) (Roudier et al. 2011). Les deux premiers états (Chromatin States, CS1 et 2) sont principalement observables au niveau de séquences riches en gènes (respectivement 54% et 23% des gènes) et présentent des rôles antagonistes. Le CS1 correspond à une chromatine favorable pour la transcription. Cet état est notamment enrichi en marque activatrice du type H3K4me3, H3K36me3, H2Bub et H3K56ac. Le CS2 correspond quant à lui à une chromatine peu favorable à la transcription et est majoritairement associé aux gènes, et dans une moindre mesure au niveau d’éléments transposables et de séquences intergéniques (Figure 1.6B). Cet état est essentiellement enrichi en H3K27me3 mais présente également des H3K27me2 (plus abondants dans le CS3). Le CS3 cible les régions riches en éléments transposables ou séquences répétées, et est enrichi en marques H3K9me2, H4K20me1, H3K27me1, H3K27me2 ainsi qu’en méthylation de l’ADN. Le CS4 est un état distinct des autres, puisqu’il ne semble pas présenter de signature singulière (pas d’enrichissement d’une marque particulière, spécifique de cet état). Cet état cible 10% des gènes, dont la plupart présentent un faible niveau d’expression (similaire au CS2, Figure 1.6C), et les séquences intergéniques (Roudier et al. 2011). Les résultats de cette étude suggèrent que certains de ces mécanismes de régulation sont conservés au sein des organismes, puisque les états obtenus sont similaires à ceux observés chez la Drosophile par Filion et al. (2010).
Plus récemment, une autre étude chez Arabidopsis, analysant 16 marques chromatiniennes et leur position sur la séquence d'ADN révèle une combinaison de 9 états chromatiniens (Sequeira-Mendes et al. 2014). Globalement, les marques corrélées à une forte transcription sont les mêmes que celles obtenues par Roudier et al. (2011). Il en est de même pour les marques corrélées à une faible transcription. L'augmentation du nombre d'état chromatinien dans cette analyse, résulte de la considération de la région ciblée (position sur la séquence d'ADN). Ils observent tout de même un état (état 2 dans cette étude) qui semble intermédiaire aux CS1 et CS2 de Roudier et al. (2011). En effet, cet état, ciblant le promoteur proximal des gènes transcrits, présente un fort enrichissement en marques activatrices (H3K4me3, H3K4me2, H3K36me3 et H2Bub) ainsi qu'un fort enrichissement en H3K27me3 (Sequeira-Mendes et al. 2014).

La chromatine n'est donc pas uniquement restreinte à un état favorable ou répresseur pour la transcription à un locus donné, mais peut présenter une combinaison d'états selon le tissu et la région du gène considéré. Ces mécanismes de régulation impliquent une communication et/ou une coopération entre les différentes marques et les complexes qui les déposent dans le but de réguler correctement l'expression génique. Rappelons que ces études chez Arabidopsis ont été réalisées sur un nombre restreint de modifications (12 et 16). Néanmoins, si on considère de façon globale les marquages chromatiniens observés sur un gène dont la transcription est active ou réprimée, certaines signatures se dégagent. Sur les gènes actifs, on retrouve dans ces études, un fort enrichissement en H3K4me3/2 et H3K36me3, H2Bub, H3.3 et H2A.Z. En plus de ces marques, nous considérerons l'acétylation des H3K9 (H3K9ac) entant que marque "signature" d'un état transcriptionnel actif. En effet, de nombreuses études ont montré qu'il existe un parallèle entre le gain ou la perte des H3K9ac et le niveau d'expression des gènes (Kim J. M. et al. 2012 ; Malapeira et al. 2012). Bien qu’étant associées à des gènes actifs, rappelons que leur position sur le gène diffère (Tableau 1.1). Au niveau des gènes présentant un faible niveau d’expression, on retrouve principalement la marque H3K27me3. De nombreuses études ont montré que la répression exercée par H3K27me3 au niveau des gènes pouvait être renforcée par le dépôt de H2AUb, cependant son dépôt peut également précéder celui des H3K27me3 (Turck et al. 2007 ; Bratzel et al. 2010 ; Xu & Shen 2008 ; Yang et al. 2013).

Par la suite, nous allons principalement nous focaliser sur la marque chromatinienne H3K27me3. Nous détaillerons dans un premier temps les acteurs associés au dépôt et à la
Tableau 1.2 : Détails des membres du groupe Polycomb (PcG, incluant PRC1 et PRC2), ainsi que leur fonction au sein du complexe, chez *Arabidopsis thaliana*.
La colonne « domaine conservé » correspond au domaine commun à celui retrouvé chez la Drosophile.
D’après Xiao & Wagner 2015 ; Pu & Sung 2015 et Mozgova & Hennig 2015.

<table>
<thead>
<tr>
<th>Groupe</th>
<th>Complexes</th>
<th>Abréviation</th>
<th>Nom</th>
<th>Domaine conservé</th>
<th>Fonction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polycomb Group (PcG)</td>
<td>Polycomb Repressive Complex 1 (PRC1)</td>
<td>LHP1</td>
<td>LIKE-HETEROCHROMATIN PROTEIN1</td>
<td>Chromodomain</td>
<td>Liaison aux H3K27me3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RING1A/B</td>
<td>REALLY INTERESTING NEW GENE 1 A/B</td>
<td>RING-finger</td>
<td>E3 ubiquitine ligase-H2AKUb</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BM1A/B</td>
<td>B LYMPHOMA MO-MLV INSERTION REGION 1 HOMOLOG</td>
<td>doigt de zinc</td>
<td>H2A ubiquitination</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EMF1</td>
<td>EMBRYONIC FLOWER 1</td>
<td>-</td>
<td>Compaction de la chromatine</td>
</tr>
<tr>
<td></td>
<td>Polycomb Repressive Complex 2 (PRC2)</td>
<td>CLF/SWN/MEA</td>
<td>CURLY LEAF/ SWINGER/ MEDEA</td>
<td>SET</td>
<td>H3K27me3 tri-méthyltransférase</td>
</tr>
<tr>
<td></td>
<td>FIE</td>
<td>FERTILIZATION-INDEPENDENT ENDOSPERM</td>
<td>WD40</td>
<td>Liaison aux H3K27me3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FIS2/EMF2/VRN2</td>
<td>FERTILIZATION-INDEPENDENT SEED2 / EMBRYONIC FLOWER2 / VERNALIZATION 2</td>
<td>doigt de zinc, VEFS box</td>
<td>Stabilité du complexe et stimule l’activité méthyl-transférase</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MSI1</td>
<td>MULTICOPY SUPPRESSOR of IRA 1</td>
<td>WD40</td>
<td>Liaison aux nucléosomes</td>
<td></td>
</tr>
</tbody>
</table>
dynamique de cette marque, pour présenter ensuite le rôle de H3K27me3 dans la croissance et le développement des plantes.

2.3. Acteurs du dépôt et de la dynamique H3K27me3

La tri-méthylation de H3K27 est catalysée par le complexe POLYCOMB REPRESSIVE COMPLEX 2 (PRC2). Ce complexe est composé de 4 sous-unités protéiques (Derkacheva & Hennig 2014) (Tableau 1.2).

(i) Une protéine portant l'activité tri-méthyltransférase, parmi les trois codées par le génome d’Arabidopsis : CURLY LEAF (CLF), MEDEA (MEA) et SWINGER (SWN). MEA présente un rôle fondamental dans le développement embryonnaire, alors que CLF et SWN agissent préférentiellement durant le développement végétatif (Holec & Berger 2012 ; Engelhorn et al. 2014). CLF et SWN présentent des rôles redondants au cours du développement des plantes puisque le double mutant présente un phénotype plus sévère que celui des simples mutants. Cependant le fait que SWN ne complémente pas le phénotype du mutant clf suggère que cette redondance n'est que partielle et que CLF est la méthyltransférase majoritaire durant le développement végétatif (Chanvivattana et al. 2004).

(ii) Une protéine participant à la stabilité du complexe et stimulant l'activité méthyltransférase, parmi les trois codées par le génome d’Arabidopsis : FERTILIZATION-INDEPENDENT SEED2 (FIS2), EMBRYONIC FLOWER2 (EMF2), et VERNALIZATION 2 (VRN2). Ainsi, trois complexes PRC2 sont distingués en fonction de ces trois protéines, de par le fait que FIS2 présente un rôle durant le développement reproductif, alors qu’EMF2 et VRN2 interviennent durant le développement végétatif (Grimanelli & Roudier 2013).

(iii) Une protéine capable de lier les nucléosome, MULTICOPY SUPPRESSOR of IRA1 (MSI1). Notons que le génome d’Arabidopsis code pour 5 protéines MSI mais seul MSI1 semble faire partie du complexe PRC2 (Derkacheva & Hennig 2014).

(iv) Et enfin une protéine capable de lier les H3K27me3, FERTILIZATION-INDEPENDENT ENDOSPERM (FIE) (Pu & Sung 2015).

Le complexe PRC2 appartient au groupe Polycomb (PcG). Ce groupe inclut un autre complexe qui intervient également au niveau de la répression de l’expression des gènes, le POLYCOMB REPRESSIVE COMPLEXE 1 (PRC1) dont la fonction est de catalyser l’ubiquitination de H2A. Le complexe PRC1 est composé de deux sous-unités RING1A et B (E3 ubiquitine ligase-H2AUb), deux sous-unités BMI1A et B (H2A ubiquitination) et enfin deux sous-unités spécifiques des plantes EMBRYONIC FLOWER 1 (EMF1, compaction de
la chromatine) et LIKE HETEROCHROMATINE PROTEIN1 (LHP1, liaison aux H3K27me3) (Tableau 1.2) (Mozgova & Hennig 2015). LHP1 possède un chromodomaine qui reconnaît et se lie aux H3K27me3. De par cette capacité, il aurait pour fonction de recruter PRC1 là où un marquage H3K27me3 est établi (Pu & Sung 2015). Néanmoins certaines évidences suggèrent que LHP1 pourrait faire le lien entre les complexes PRC2 et PRC1. Tout d’abord, le mutant *lhp1* présente un phénotype similaire à celui des mutants *prc2* contrairement aux mutants d’autres membres du complexe PRC1 (Mozgova & Hennig 2015). De plus, LHP1 a été co-purifiée avec différents membres du complexe PRC2 (Derkacheva et al. 2013 ; Wang et al. 2016). Ainsi, il est probable que LHP1 soit généralement associé au complexe PRC2 chez les plantes. De même, LHP1 pourrait participer à la dynamique H3K27me3, puisqu'il semble important pour la propagation de cette marque vers la partie 3’ des gènes et dans une moindre mesure, dans le corps du gène (Veluchamy et al. 2016).

Contrairement au groupe Polycomb (PcG, incluant PRC1 et 2) qui catalyse H3K27me3 et H2AUb au niveau de gènes très faiblement exprimés, le groupe Trithorax (TrxG) catalyse H3K4me3 et H3K36me3 au niveau des gènes exprimés. De par leurs fonctions opposées et leurs cibles communes, les deux groupes sont considérés comme antagonistes l'un de l'autre (Engelhorn et al. 2014). Les complexes PcG et TrxG sont souvent associés à des protéines impliquées dans le retrait des marques activatrices et répressives (respectivement) permettant ainsi la transition d'un état transcriptionnel à un autre (Engelhorn et al. 2014). Il existe un très grand nombre de protéines impliquées dans le retrait des méthylations des histones. REF6 semble être la déméthylase majoritaire des H3K27me3 puisqu'une surexpression de REF6 entraîne une diminution globale des H3K27me3 et me2, produisant un phénotype similaire à celui d'un mutant *prc2* (floraison précoce, feuilles repliées : *curly leaf* etc.) (Lu et al. 2011). De plus, l'analyse du mutant *ref6* a révélé qu'une centaine de gènes présentent une hyperméthylation sur les H3K27 (Lu et al. 2011). ELF6 présente également une activité H3K27me2/3 *in vivo*, et un phénotype associé à un défaut de retrait de H3K27me3 sur le gène *FLOWERING LOCUS C (FLC)* (Crevillén et al. 2014). Par homologie de séquence avec REF6 et ELF6, JMJ13 pourrait également présenter une activité H3K27 déméthylase. Pour finir, JMJ30 et JMJ32 semblent également intervenir dans le retrait des H3K27me3 au locus *FLC* lorsque les plantes sont cultivées à des températures plus élevées (29°C) dans le but de retarder la floraison (Gan et al. 2014). Cependant JMJ30 serait aussi capable de déméthyler H3K36me2/3 *in vitro* (Yan et al. 2014) suggérant qu'elle n'est pas spécifique de K27.
Figure 1.7 : Illustration du rôle des groupes Polycomb (PcG, incluant les Polycomb Repressive complexe 1 et 2) et de certains membres de Trithorax (TrxG) au cours du développement de la plante.
Les différentes associations de protéines formant le complexe PRC2 (rouge) et TRX (vert) sont représentées en fonction de la transition de phase du développement : G (germination), B (floraison, bolting), F (fertilisation) et D (dessiccation). L’encadré gris souligne le rôle antagoniste des groupes PcG et TrxG aux loci des gènes du développement. Engelhorn et al. 2014.
Ainsi, la chromatine constitue une forme organisée du génome dont la régulation, qui est dynamique, influence l'état transcriptionnel des gènes, notamment les gènes clefs du développement.

2.4. Régulation chromatiniennne liée à H3K27me3 et PRC2 chez Arabidopsis

2.4.1. Régulation chromatienne liée à H3K27me3 et PRC2 dans le développement

Les complexes PcG et Trx ayant été caractérisés sur les gènes homéotiques chez la Drosophile, la plupart des études chez Arabidopsis ont été consacrées à l’analyse de leur rôle dans le développement. Ces complexes et notamment PcG, interviennent entre autres dans l’identité et la différenciation cellulaire, ainsi que dans la mise en place et le maintien des patrons d'expression tissus spécifiques (Xiao & Wagner 2015 ; Morao et al. 2016 ; Mozgova & Hennig 2015). En effet, les cellules indifférenciées présentent un marquage H3K27me3 et l’absence de cette marque dans certains tissus pourrait gouverner les patrons d'expression de gènes de la différenciation cellulaire (Lafos et al. 2011). Cette observation est en accord avec (i) le fait que la reprogrammation des cellules foliaires lors de cultures de calis requiert le complexe PRC2 pour réprimer les facteurs de transcription régulant la différenciation cellulaire dans les feuilles (He et al. 2012) et (ii) que chez le double mutant clf swn, présentant une perte totale en H3K27me3, l'identité des organes est affectée (Aichinger et al. 2011; Lafos et al. 2011). Néanmoins, le complexe PRC2 régule également l’expression de gènes liés à la biosynthèse, le transport et la signalisation de l’auxine (Lafos et al. 2011 ; Gu et al. 2014) participant également à modifier l’organogénèse chez Arabidopsis.

En plus de leurs rôles majeurs dans ces mécanismes de contrôle du destin et de l’identité cellulaire, ces complexes sont également requis pour les reprogrammations transcriptionnelles qui s'opèrent au cours du développement des plantes notamment lors de la plupart des transitions développementales (Xiao & Wagner 2015) (Figure 1.7). Dans le modèle de la transition florale, CLF et SWN interagissent avec FIE et EMF2 pour maintenir la répression de plusieurs régulateurs majeurs de la floraison. C’est notamment le cas de FLOWERING LOCUS T (FT, activateur de la floraison) durant le développement végétatif, afin d’empêcher une floraison précoce (Jiang et al. 2008), et de FLC suite à une longue période de froid (vernalisation), afin d’activer la transition florale (levée de la répression exercée par FLC sur FT notamment) (Jiang et al. 2008 ; Kim S. Y. et al. 2012). Le rôle des complexes PRC2 dans
la régulation de *FLC* a été largement décrit puisque ce locus est un exemple de l'implication du complexe PRC2 dans les transitions de phases mais également en réponse à l'environnement (vernalisation) (Whittaker & Dean 2017). Durant la transition du développement embryonnaire vers un développement végétatif, les complexes PRC2 et PRC1 répriment les gènes de la maturation de la graine, *LEAFY COTYLEDON2 (LEC2)*, *ABSCISIC ACID INSENSITIVE3 (ABI3)*, et *FUSCA3 (FUS3)*. L’absence de répression de ce programme entraîne rapidement chez les plantules la synthèse de corps gras et de lipides de stockage, caractéristiques du développement embryonnaire (Bouyer et al. 2011). Il est intéressant de noter que dans ce modèle, PRC1 établirait la répression qui serait par la suite maintenue par PRC2 (Yang et al. 2013).

L'importance de PRC2 et des H3K27me3 a donc été bien documentée en matière de reprogrammation massive qui s’opère au cours du développement embryonnaire ou reproductif, ou encore de la transition florale. À l'inverse, peu de données sont disponibles concernant leurs rôles dans le développement de la racine. Une première étude a montré que CLF est impliquée dans le maintien de l’activité du méristème de la racine primaire chez Arabidopsis, indépendamment des flux d’auxine (Aichinger et al. 2011). En effet, une mutation de *CLF* entraîne une augmentation de l'activité du méristème basal (activité mitotique) conduisant à une zone méristématique plus large, et une augmentation de la longueur de la racine primaire. Cette augmentation de l'activité mitotique est également observée au niveau du méristème apical (centre quiescent et initiales) puisque la mutation *clf* est associée à une augmentation des divisions dans les initiales de la columelle ce qui conduit à la production d'une couche cellulaire supplémentaire. En accord avec ces observations, la mutation *clf* entraîne une augmentation de l'expression de *WUSCHEL RELATED HOMEOBOX 5 (WOX 5)*, facteur de transcription clé du maintien de l'activité des cellules souches du centre quiescent) uniquement dans les cellules du centre quiescent, ainsi que des facteurs de transcription *AGAMOUS LIKE 42* et 21 (*AGL42/21)* (Aichinger et al. 2011). D'autres évidences ont été apportées sur le rôle de CLF dans l'inhibition de la formation des racines latérales puisque le mutant présente une augmentation de la densité en racines latérales (Gu et al. 2014). En effet, *CLF* est fortement exprimé dans le méristème basal de la racine primaire (zone où les cellules fondateuses des primordia sont définies), ainsi que dans ces cellules fondateuses, et y réprime, par déposition de H3K27me3, l’expression du gène *PIN FORMED 1 (PIN1)* codant pour un transporteur d’auxine. *PIN1* n’étant pas exprimé, le maxima d'auxine nécessaire à la formation des racines latérales n'est pas atteint (Gu et al. 2014). Pour finir, PRC2 semble important au maintien de l’identité des poils absorbants de la
Chapitre 1
Régulation de l’expression génique par la chromatine

racine. En effet, il a été montré que dans les racines, la répression de *LEC2* et *WOUND INDUCED DEDIFFERENTIATION 3 (WIND3)* par PRC2 était importante pour empêcher la dédifférenciation des poils racinaires (Ikeuchi et al. 2015).

Toute ces régulations requièrent l'extinction de certains programmes génomiques développamentaux alors que d'autres sont activés. De ce fait, la majorité des études réalisées présentent les complexes PcG comme des régulateurs de type "ON/OFF". En accord avec cette hypothèse, une étude a démontré que le gène *FLC* était régulé par H3K27me3 selon une répression de type ON/OFF, et de façon cellule-autonome (Angel et al. 2011 ; Berry et al. 2015). De plus, au sein d'une même cellule, une copie du gène FLC peut être réprimée et pas l'autre (Berry et al. 2015). À l'inverse, l’effet de H3K27me3 sur la régulation du gène *VIN3* semble se rapprocher d’un effet dose, quantitatif, qui permettrait de contrôler le niveau d’induction de *VIN3* en réponse au froid (Jean Finnegan et al. 2011). La chromatine pourrait ainsi participer à la plasticité développementale des plantes, notamment en réponse à l'environnement, suggérant également que les régulations chromatiniennes pourraient être beaucoup plus dynamiques et complexes que la mise en place d’un système ON/OFF. D’une façon plus générale, le modèle actuel propose que le ratio entre marques répressives (H3K27me3 notamment) et marques activatrices (H3K4me3, H3K36me3 et/ou H3K9ac) pourrait conditionner le statut transcriptionnel de certains loci plutôt que d'agir en ON/OFF (Engelhorn et al. 2014). Nous avons également vu qu’un état chromatinien particulier, selon Sequeira-Mendes et al. (2014), présente un enrichissement à la fois en marque activatrice H3K4me3 et en marque répressive H3K27me3 au niveau du promoteur proximal de gènes transcriptionnellement actifs. De ce fait, PRC2, par l’intermédiaire de la marque qu’il déploie et en interaction avec les marques activatrices, pourrait moduler l'activité transcriptionnelle de leurs cibles (Pu et al. 2013 ; Sequeira-Mendes et al. 2014 ; Engelhorn et al. 2014).

2.4.2. Régulation chromatiniene dans la nutrition minérale

Contrairement à son rôle bien décrit dans le développement, l’importance de la dynamique H3K27me3 dans la réponse et l’adaptation aux variations nutritionnelles reste encore peu connue. Cependant, certaines marques "signatures", exposées dans le paragraphe 2.2, interviennent dans la régulation des gènes clés de la nutrition minérale. En effet, des études récentes révèlent que la chromatine intervient également dans la régulation de l’expression de gènes en réponse aux variations nutritionnelles, notamment en phosphate, fer ou N (Secco et al. 2017).
Dans le cadre d'une carence en phosphate, les racines répondent par un arrêt de la croissance de la racine primaire et une prolifération des poils racinaires (densité et élongation). La formation d'un poil racinaire correspond à l'extension d'une cellule épidermique spécifique (trichoblaste) (Chen et al. 2015). Un criblé génétique, recherchant des mutants présentant un défaut d'élongation des poils racinaires en réponse à la carence en phosphate, a révélé le rôle d'un facteur de transcription à homéodomaine PHD capable de lier les H3K4me3, ALFIN-LIKE 6 (AL6) (Chandrika et al. 2013). AL6 aurait pour fonction d'activer en réponse à la carence, un autre facteur de transcription (ETC, Myb) qui activerait les gènes promouvant l'élongation des poils absorbants. Cependant, l'expression de AL6 est indépendante des variations en phosphate. Les données bibliographiques indiquant qu’AL6 est capable de lier les H3K4me3, les auteurs ont discuté du possible rôle des H3K4me3 dans le recrutement d’AL6 pour l'activation de cette réponse (Chandrika et al. 2013). Chez Arabidopsis, les trichoblastes sont disposés en files longitudinales séparées par des files de cellules atrichoblastes (ne formant pas de poils racinaires). L'augmentation de la densité en poils racinaires en réponse à une carence en phosphate est due à une reprogrammation des cellules atrichoblastes en cellules trichoblastes (Chen et al. 2015). Un traitement par la trichostatine A (TSA), un inhibiteur des histones déacétylases (HDAC, protéines impliquées dans le retrait des acétylations des histones) entraîne la formation de cellules trichoblastes à la place de cellules atrichoblastes (Xu et al. 2005). Le rôle de certaines HDAC a été analysé en réponse à la carence en phosphate (Chen et al. 2015). HDA19 semble avoir un rôle majeur en contrôlant différents aspects de cette réponse, incluant la densité et l'élongation des poils racinaires ainsi que la remobilisation des lipides membranaires (ce qui augmente le Pi libre in planta), contribuant au final au maintien de l'homéostasie du phosphate (Chen et al. 2015). Bien que sa fonction n’ait pas été étudiée en réponse au phosphate, il est intéressant d’observer que PRC2 intervient également dans l'identité des trichoblastes. En effet, comme exposé supra, PRC2 empêche la dédifférentiation des poils racinaires après leur formation (Ikeuchi et al. 2015). Le variant d'histone H2A.Z semble également intervenir en réponse à la carence en phosphate (Smith et al. 2010 ; Kuo et al. 2014). L'incorporation de H2A.Z chez Arabidopsis fait intervenir entre autres ARABIDOPSIS NUCLEAR ACTIN RELATED PROTEIN 6 (ARP6). Chez le mutant ar6, le niveau en H2A.Z est diminué aux loci de différents gènes de réponse à la carence en phosphate (incluant le transport et la distribution du phosphate, ainsi que la transduction du signal et le métabolisme primaire), ce qui conduit à la réactivation de ces gènes (dérépression) entrainant un phénotype de plante carencée en phosphate (augmentation de la densité et de la longueur des poils et légère diminution de la
longueur de la racine primaire) (Smith et al. 2010). Dans ce modèle, la présence de H2A.Z semble corrélée à une répression transcriptionnelle (Smith et al. 2010 ; Kuo et al. 2014).

D’autres études ont étudié l’implication de la dynamique chromatinienne dans l'homéostasie du fer (Fan et al. 2014 ; Xing et al. 2015). Une première étude a montré qu'une di-méthylation symétrique des H4R3 (H4R3sme2), déposée par le complexe PRMT5, est impliquée dans la réponse au fer. En effet, une mutation dans PRMT5 entraîne une accumulation de fer dans les feuilles et une meilleure tolérance à la carence qu'une plante sauvage. PRMT5 aurait pour fonction de réprimer, par dépôt de H4R3sme2, les gènes codant pour des facteurs de transcription du type bHLH impliqués dans le transport et l'homéostasie du fer (Fan et al. 2014). Une autre étude révèle que le dépôt d'acétylations sur les H3K9 et H3K14 par le complexe GCN5 pourrait jouer un rôle dans le translocation du fer des racines vers les feuilles (Xing et al. 2015). En effet, la mutation gcn5 conduit à une rétention du fer dans les racines, ce qui affecte son homéostasie. GCN5 aurait pour fonction d'activer, par dépôt de H3K9ac et H3K14ac, des gènes impliqués dans l'homéostasie du fer, notamment FERRIC REDUCTASE DEFECTIVE 3 (FRD3). De plus, cette étude complète le modèle en montrant que HDA7 et HDA14 (deux HDAC) ont pour fonction de réprimer FRD3 en retirant les acétylations des lysines au locus. Sous condition déficiente en fer, 879 gènes semblent régulés par GCN5. Parmi ces gènes, 8 % sont impliqués dans la réponse aux stress et 7 % sont impliqués dans le transport incluant le transport de NO3⁻ (Xing et al. 2015).

Pour finir, nous allons présenter de plus amples informations sur le phénotype du mutant hni9-1 (présenté dans la partie 1.3) suggérant que NRT2.1 pourrait être régulé par la présence de H3K27me3. Nous avons vu que mutant hni9-1 est altéré dans la répression de NRT2.1 sous conditions répressives (10mM NH₄NO₃, HN) en corrélation à une diminution en marque répressive H3K27me3 au locus NRT2.1 (Figure1.4). À l'inverse, sur une condition limitante en N (très favorable à l'expression de NRT2.1, 0.3mM NO₃⁻, LN), un enrichissement en H3K4me3 et dans une moindre mesure un enrichissement en H3K36me3, ont été observés au locus NRT2.1. La mutation hni9-1 ne semble pas avoir d’action notable sur le niveau des marques activatrices et répressives sur LN (Figure 1.4). La mutation a été caractérisée et correspond à un codon stop prématuré coté C-terminal dans la protéine codée par le gène INTERACT WITH SPT6 (AtIWS1). Chez les animaux et la levure, IWS1 appartient à un complexe incluant SPT6, des protéines H3K27me3 déméthylases et H3K36 triméthyltransférase, et a pour rôle de faciliter l'elongation de la transcription (Zhang et al. 2008 ; Yoh et al. 2008 ; Chen et al. 2012 ; Wang et al. 2013). Ainsi, chez les animaux, IWS1 serait
impliquée dans les processus d’activation de la transcription. De manière similaire, chez Arabidopsis, HNI9/IWS1 active l'expression de gènes en réponse aux brassinostéroïdes, à travers son interaction avec le facteur de transcription BRI1 EMS SUPPRESSOR 1 (BES1), qui interagit lui-même avec d'autres facteurs de transcription ainsi qu'avec des histones déméthylases, notamment REF6 et ELF6 (deux H3K27me3 déméthylases, voir partie 2.3) (Li et al. 2010). De plus, il a été démontré que SET DOMAIN GROUP 8 (SDG8, une H3K36 triméthyltransférase) interagit avec HNI9/IWS1 et BES1 afin d'activer les gènes de cette réponse (Wang et al. 2014). Ainsi, il est surprenant d’observer que HNI9/IWS1 soit associée au dépôt des H3K27me3 en réponse à un fort statut nutritionnel en N (Widiez et al. 2011). Il est donc probable que HNI9/IWS1 ait un rôle indirect dans cette réponse. Néanmoins, plusieurs questions émergent à la suite de ces observations, concernant le rôle de H3K27me3 dans la régulation de \(NRT2.1\) par le statut azoté et la fonction de HNI9/IWS1 dans la réponse aux variations nutritionnelles en N.

3. Objectifs de thèse

Au vu des dernières avancées sur la régulation de l'expression de \(NRT2.1\), le projet qui m'a été confié est d'étudier, chez Arabidopsis, la contribution de la régulation chromatinienne et notamment de H3K27me3, en réponse aux variations nutritionnelles en N. Ce sujet s’est articulé autour de trois principales questions de recherche:

(1) **La marque H3K27me3 est-elle impliquée dans la régulation transcriptionnelle de \(NRT2.1\) en réponse aux variations en N du milieu ?** Pour répondre à cette question, nous avons choisi une approche de génétique inverse en utilisant des mutants perte de fonction pour les H3K27 tri-méthyltrasférases du complexe PRC2, *CURLY LEAF* (*clf-29*), *SWINGER* (*swn-3*) ainsi que le double mutant. Nous avons introduit par croisement ces mutations dans différentes lignées promuteur-rapporteur \(pNRT2.1(456\text{pb})::GUS, pNRT2.1(1201\text{pb})::LUC\) et \(pNRT2.1(1974\text{pb})::GFP\), afin d’étudier l’impact de ces mutations sur l’activité du promoteur \(NRT2.1\) (expression et analyses chromatinienes). Afin d'analyser la régulation chromatinienne de \(NRT2.1\) dans les tissus où il est spécifiquement exprimé (épiderme et cortex), nous avons utilisé des lignées INTACT (Isolation of Nuclei Tagged in specific Cell Types).
(2) Quel est le rôle de HNI9/IWS1 dans la réponse aux variations nutritionnelles en N ? Nous avons dans un premier temps choisi une approche in silico en exploitant le transcriptome du mutant hni9-1 réalisé par l'équipe (Widiez et al. 2011). Nous y avons recherché des gènes qui sont activés sur fort N dans une lignée sauvage et dont l’induction est dépendante de HNI9, afin de dégager une hypothèse sur la fonction de HNI9. Cette fonction, ainsi que les gènes candidats associés, ont été validés expérimentalement (analyses biochimiques, phénotypiques, niveaux d'expression et analyses chromatiniennes) dans un fond sauvage et mutant hni9-1.

(3) De par le rôle de NRT2.1 et de PRC2 dans l’architecture racinaire, **PRC2 est-il impliqué dans la régulation de NRT2.1 afin de modifier l’architecture racinaire en réponse au N ?** Afin de tester cette hypothèse, nous avons analysé et comparé l’architecture du système racinaire entre une lignée sauvage (Col-0) et les mutants nrt2.1-2 et clf-29, sur des milieux contenant différentes teneurs en N.
Chapitre 2

Matériels et méthodes
<table>
<thead>
<tr>
<th>Chapitre concerné</th>
<th>Lignées disponibles</th>
<th>Fond génétique</th>
<th>Description</th>
<th>Référence / fourni par</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapitre 2</td>
<td>Col-0</td>
<td>Col-0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>pNRT2.1(456)::GUS</td>
<td>Col-0</td>
<td>Lignée exprimant le gène GUS::tNOS sous contrôle de la séquence -456/+1 du gène NRT2.1 dans un fond sauvage</td>
<td>Girin et al. 2007</td>
<td></td>
</tr>
<tr>
<td>pNRT2.1(1201)::LUC</td>
<td>Col-0</td>
<td>Lignée exprimant le gène LUC::tNOS sous contrôle de la séquence -1201/+1 du gène NRT2.1 dans un fond sauvage</td>
<td>Girin et al. 2010</td>
<td></td>
</tr>
<tr>
<td>pNRT2.1(1974)::GFP</td>
<td>Col-0</td>
<td>Lignée exprimant le gène GFP sous contrôle de la séquence -1974/+1 du gène NRT2.1 dans un fond sauvage</td>
<td>Kiba et al. 2012</td>
<td></td>
</tr>
<tr>
<td>pNRT2.1(1335)::NRT2.1::GFP nrt2.1-2</td>
<td>Ws</td>
<td>Lignée de complémentation du mutant nrt2.1-2 exprimant le gène NRT2.1 fusionné à celui de la GFP (C terminal) sous contrôle du promoteur NRT2.1 (1.335kb)</td>
<td>Wirth et al. 2007</td>
<td></td>
</tr>
<tr>
<td>pEXP7::NTF "break line"</td>
<td>Col-0</td>
<td>Lignée INTACT intégrant la GFP dans l'envelope nucléaire des cellules qui expriment le gène EXP7 (poil absorbant) (pEXP7::NTF/pK7m34GW et une lignée pACT:BirA)</td>
<td>Marquès-Bueno et al. 2016</td>
<td></td>
</tr>
<tr>
<td>pPEP::NTF "break line"</td>
<td>Col-0</td>
<td>Lignée INTACT intégrant la GFP dans l'envelope nucléaire des cellules qui expriment le gène PEP (cortex) (pPEP::NTF/pK7m34GW et une lignée pACT:BirA)</td>
<td>Marquès-Bueno et al. 2016</td>
<td></td>
</tr>
<tr>
<td>pSUC2::NTF "break line"</td>
<td>Col-0</td>
<td>Lignée INTACT intégrant la GFP dans l'envelope nucléaire des cellules qui expriment le gène SUC2 (cellules compagnes du phloème) (pSUC2::NTF/pK7m34GW et une lignée pACT:BirA)</td>
<td>Marquès-Bueno et al. 2016</td>
<td></td>
</tr>
<tr>
<td>pCLF::CFP::CLF;clf-29</td>
<td>Col-0</td>
<td>Lignée de complémentation du mutant clf-29 exprimant le gène CLF fusionné à celui de la CFP sous contrôle du promoteur CLF</td>
<td>de Lucas et al. 2016</td>
<td></td>
</tr>
<tr>
<td>Chapitre 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p35S::GFP::IWS1;hn9-1</td>
<td>Col-0</td>
<td>Lignée exprimant le gène HNI9 (CDS) fusioné en N terminal à la GFP sous contrôle du promoteur 35S dans un fond mutant hni9-1</td>
<td>Widiez et al. 2011</td>
<td></td>
</tr>
<tr>
<td>DRS::GFP</td>
<td>Col-0</td>
<td>Lignée exprimant le gène mGFP4 sous contrôle d'un promoteur synthétique rapporteur de la présence d'auxine (DRS)</td>
<td>Ottenschläger et al. 2003 ; Haseloff et al. 1997</td>
<td></td>
</tr>
<tr>
<td>pNRT1.1::NRT1.1::GFP;chl1-5</td>
<td>Col-0</td>
<td>Lignée de complémentation du mutant chl1-5 exprimant le gène NRT1.1 fusionné à celui de la GFP (dans la boucle cytosolique) sous contrôle du promoteur NRT1.1 (1,533kb)</td>
<td>Bouguyon et al. 2016</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 2.1 : Liste des lignées mentionnées dans ce manuscrit.
1. Matériel végétal

La plupart des expériences sont réalisées sur l’écotype Columbia (Col-0) et certaines sur l’écotype Wassilewskija (WS). Les différentes lignées utilisées sont présentées dans les Tableaux 2.1 (lignées mentionnées dans ce manuscrit), 2.2 (mutants utilisés dans ce manuscrit) et 2.3 (lignées obtenues par croisement).

2. Conditions de cultures

2.1. Cultures in vitro

Les plantes sont cultivées verticalement sur des boîtes de pétri (12x12 contenant 40 mL de milieu gélosé) pendant 7 jours. Les graines sont préalablement stérilisées 10 minutes avec une solution contenant 50% EtOH et 1.2% de 02 javel (ETS D. RICHET). Elles sont ensuite lavées 3 fois avec de l’ETOH absolu et laissées sécher sous hotte sur un papier Whatman avant d’être semées au cure-dent. La teneur en N du milieu gélosé varie selon les manipulations [milieu de base : MS/2 modified medium, no nitrogen (plantMedia), supplémenté avec 0.1% de sucre, 0.5g.L⁻¹ de MES, la source de N requise, ajustement du pH à 5.8 et 0.8% d’agar] mais deux conditions contrastées ont été principalement utilisées afin d’étudier l’activité transcriptionnelle du promoteur NRT2.1 : Low N (LN : 0.3mM KNO₃) et High N (HN : 10mM NH₄NO₃). Les boîtes sont scellées avec du scotch transparent des deux côtés de la boîte puis mises à stratifier à l’obscurité pendant 2-3 jours avant d’être transférées en chambre de culture. Les conditions de culture sont les suivantes : cycle de 16h de jour pour 8h de nuit avec une intensité lumineuse de 125 µmol de photon .m⁻². S⁻¹, une température constante à 20°C et 65% d’humidité relative.

2.2. Cultures hydroponiques

La culture des plantes en bassines est faite en condition non stérile. Les graines sont déposées avec un cure-dent sur du milieu gélosé LN (avec seulement 0.5 % d’agar) contenu dans des eppendorfs de 1.5 mL dont la partie inférieure a été sectionnée et remplacée par une grille en inox. La première semaine de culture est réalisée en plaçant les tubes eppendorfs sur des plaques en polystyrène percées qui reposent sur des bassines contenant 10 L d’eau osmosée. Après une semaine (avant que la racine ait traversé la gélose), l’eau est remplacée par 10 L d’une solution nutritive à 1mM de NO₃⁻ contenant : 0.5mM KNO₃, 0.25mM Ca(NO₃)₂, 1mM KH₂PO₄, 1mM MgSO₄, 0.1mM Na-Fe-EDTA et des macroéléments [50mM
Tableau 2.2 : Liste des mutants utilisés dans ce manuscrit.

<table>
<thead>
<tr>
<th>Gène</th>
<th>AGI</th>
<th>Nom du mutant/allèle</th>
<th>Fond génétique</th>
<th>Origine / caractérisation</th>
<th>Fournit par</th>
<th>Chapitre concerné</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLF</td>
<td>AT2G23380</td>
<td>clf-29 ; SALK 021003</td>
<td>Col-0</td>
<td>Xu & Shen 2008</td>
<td>NASC</td>
<td>Chapitres 3 et 5</td>
</tr>
<tr>
<td>SWN</td>
<td>AT4G02020</td>
<td>swn-3 ; SALK 050195</td>
<td>Col-0</td>
<td>Chanivivattana et al. 2004</td>
<td>NASC</td>
<td>Chapitre 3</td>
</tr>
<tr>
<td>LHP1</td>
<td>AT5G17690</td>
<td>lhp1-4/ tfl2-2 (délétion)</td>
<td>Col-0</td>
<td>Kotake et al. 2003</td>
<td>NASC</td>
<td>Chapitre 3</td>
</tr>
<tr>
<td>XRN4</td>
<td>AT1G54490</td>
<td>xrn4-5 : SAIL_681E01</td>
<td>Col-0</td>
<td>Merret et al. 2013</td>
<td>Cécile BOUSQUET-ANTONELLI</td>
<td>Chapitre 3</td>
</tr>
<tr>
<td>XRN3</td>
<td>AT1G75660</td>
<td>xrn3-3 : SAIL_1172C07</td>
<td>Col-0</td>
<td>Gy et al. 2007</td>
<td></td>
<td>Chapitre 3</td>
</tr>
<tr>
<td>XRN2</td>
<td>AT5G42540</td>
<td>xrn2-1 : SALK_041148</td>
<td>Col-0</td>
<td>Gy et al. 2007</td>
<td></td>
<td>Chapitre 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>xrn2-1;xrn3-3/+</td>
<td>Col-0</td>
<td>Gy et al. 2007</td>
<td></td>
<td>Chapitre 3</td>
</tr>
<tr>
<td>NRT2.1</td>
<td>AT1G08090</td>
<td>nrt2.1-2 SALK_035429</td>
<td>Col-0</td>
<td>Little et al. 2005; Li et al. 2007</td>
<td>NASC</td>
<td>Chapitre 5</td>
</tr>
<tr>
<td>IWS1</td>
<td>AT1G32130</td>
<td>hni9-1 (EMS)</td>
<td>Col-0</td>
<td>Girin et al. 2010; Widiez et al. 2011</td>
<td>équipe</td>
<td>Chapitre 4</td>
</tr>
<tr>
<td>VTC2</td>
<td>At4G26850</td>
<td>vtc2 (EMS)</td>
<td>Col-0</td>
<td>Collin et al. 2008; Jander et al. 2002</td>
<td>Jean François BRIAT</td>
<td>Chapitre 4</td>
</tr>
</tbody>
</table>

Tableau 2.3 : Présentation des croisements effectués au cours de la thèse, mentionnés dans ce manuscrit.

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>Fond génétique</th>
<th>Chapitre concerné</th>
</tr>
</thead>
<tbody>
<tr>
<td>swn-3 X clf-29</td>
<td>Col-0</td>
<td>Chapitre 3</td>
</tr>
<tr>
<td>pNRT2.1:GUS X clf-29</td>
<td>Col-0</td>
<td>Chapitre 3</td>
</tr>
<tr>
<td>pNRT2.1:GUS X swn-3</td>
<td>Col-0</td>
<td>Chapitre 3</td>
</tr>
<tr>
<td>pNRT2.1:GUS;swn-3 X pNRT2.1:GUS;clf-29</td>
<td>Col-0</td>
<td>Chapitre 3</td>
</tr>
<tr>
<td>pNRT2.1:LUC X clf-29</td>
<td>Col-0</td>
<td>Chapitre 3</td>
</tr>
<tr>
<td>pNRT2.1:GFP X clf-29</td>
<td>Col-0</td>
<td>Chapitre 3</td>
</tr>
<tr>
<td>pEXP7::NTF X clf-29</td>
<td>Col-0</td>
<td>Chapitre 3</td>
</tr>
<tr>
<td>pPEP::NTF X clf-29</td>
<td>Col-0</td>
<td>Chapitre 3</td>
</tr>
<tr>
<td>pUC2::NTF X clf-29</td>
<td>Col-0</td>
<td>Chapitre 3</td>
</tr>
<tr>
<td>xrn2-1 X clf-29</td>
<td>Col-0</td>
<td>Chapitre 3</td>
</tr>
<tr>
<td>xrn3-3 X clf-29</td>
<td>Col-0</td>
<td>Chapitre 3</td>
</tr>
<tr>
<td>xrn4-5 X clf-29</td>
<td>Col-0</td>
<td>Chapitre 3</td>
</tr>
<tr>
<td>pNRT2.1::NRT2.1::GFP;nrt2.1-2 X clf-29</td>
<td>WS x Col-0</td>
<td>Chapitre 3</td>
</tr>
<tr>
<td>lhp1-4 X pNRT2.1::LUC :clf-29</td>
<td>Col-0</td>
<td>Perspective Chapitre 3</td>
</tr>
<tr>
<td>hni9-1 X pIWS1::IWS1:FLAG</td>
<td>Col-0</td>
<td>Perspective Chapitre 4</td>
</tr>
<tr>
<td>hni9-1 X pPEP::NTF</td>
<td>Col-0</td>
<td>Perspective Chapitre 4</td>
</tr>
<tr>
<td>nrt2.1-2 X pNRT1.1::NRT1.1::GFP</td>
<td>Col-0</td>
<td>Chapitre 5</td>
</tr>
<tr>
<td>nrt2.1-2 X clf-29</td>
<td>Col-0</td>
<td>Perspective Chapitre 5</td>
</tr>
<tr>
<td>ref6-3 X efl6-3</td>
<td>Col-0</td>
<td>Perspective Chapitres 3 et 5</td>
</tr>
<tr>
<td>ref6-3;efl6-3 X jm13</td>
<td>Col-0</td>
<td>Perspective Chapitres 3 et 5</td>
</tr>
</tbody>
</table>
KCL, 30µM H₂BO₃, 5µM ZnSO₄, 1µM CuSO₄, 0.1µM (NH₄)₆Mo₇O₂₄⁴⁻. Une semaine plus tard, le milieu de culture est remplacé par la solution nutritive souhaitée, en général : [1mM KH₂PO₄, 1mM MgSO₄, 0.25mM K₂SO₄, 0.25 mM CaCl₂, 0.1mM Na-Fe-EDTA et des macroéléments, 0.5mM KNO₃, 0.25 mM Ca(NO₃)₂]. Au cours de la 2ᵉ ou la 3ᵉ semaine de croissance, les eppendorfs, contenant les plantes, sont transférées sur des disques de PVC perforés reposant eux-mêmes sur une grande plaque de PVC. Le dispositif est déposé sur la bassine contenant la solution nutritive. La culture des plantes dure au total 6 semaines pour obtenir une grande quantité de racines en maintenant les plantes à un stade végétatif. La solution nutritive est renouvelée toutes les semaines et 24h avant le prélèvement des plantes. Les conditions de culture sont les suivantes : cycle jour/nuit de 8h/16h avec une intensité lumineuse de 250 μE m⁻² s⁻¹, une température de 22°C le jour et de 20°C la nuit et 70% d’humidité relative.

Ce système de culture a été utilisé lors des expériences nécessitant des quantités importantes de racines comme l’INTACT ou pour faciliter les traitements (transfert des disques sur des Copro de 100mL) lors des expériences utilisant l’actinomycine D.

3. Génotypage

Les graines des différents mutants ont été fournies soit par le NASC (Nottingham Arabidopsis Stock Center, Royaume-Uni) soit par la référence figurant dans le Tableau 2.2.

Les graines sont d’abord amplifiées en serre permettant également de valider ou non la présence de la mutation à l’état homozygote dans ces mutants à l’aide des amorces présentées dans le Tableau 2.4.

3.1. Extraction de l’ADNg

Les échantillons de feuilles sont broyés au broyeur à billes (Retsch MM400). 300µL de tampon d'extraction [Tris ph8 200mM, NaCl 250mM, EDTA 25mM, SDS 0.5%, H2O milli Q] sont ajoutés suite au broyage. Pour les échantillons analysés après récolte, le broyage est effectué dans un eppendorf contenant 300µL de tampon d'extraction à l'aide d'un pilon. Dans les deux cas, une première centrifugation de 10 minutes à 14000 rpm est réalisée. 250µL de surnageant sont transférés dans un eppendorf où un volume équivalent d'isopropanol est ajouté afin de précipiter les acides nucléiques. Après 30 minutes d'attente, les eppendorfs sont centrifugés 20 minutes à 14000 rpm et le surnageant est éliminé. Le culot est rincé à l'éthanol
Tableau 2.4 : Présentation des différentes amorces utilisées lors des génotypages par PCR.
Les amorces permettant d’amplifier les différents ADN de transfert sont grisées.

<table>
<thead>
<tr>
<th>Description</th>
<th>Nom de l’amorce</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mutant clf-29 (SALK)</td>
<td>clf29 for</td>
<td>ATGGGCTCAGAAGCTTCGCC</td>
</tr>
<tr>
<td></td>
<td>clf29 rev</td>
<td>GGTGACAAACGTTTGATATCAGGCA</td>
</tr>
<tr>
<td>Mutant swn-3 (SALK)</td>
<td>swn3 F</td>
<td>ACTTGTGGCAGAATATTGC</td>
</tr>
<tr>
<td></td>
<td>swn3 R</td>
<td>AACACCTTCCAAAAGGGTTG</td>
</tr>
<tr>
<td>Mutant lhp1-4 (EMS créant une délétion)</td>
<td>LHP1_promfor</td>
<td>AATAGAACTTTTAGCCCAACAAAGTTGAGG</td>
</tr>
<tr>
<td></td>
<td>LHP1_ex1rev</td>
<td>AGCACACCTTGGCCTCTTCAT</td>
</tr>
<tr>
<td>Génotypage des lignées INTACT</td>
<td>pSUC2</td>
<td>GCGTAGGGATCTCTGCAGA</td>
</tr>
<tr>
<td></td>
<td>pEXP7</td>
<td>CTGCTGACGTCAACTTAT</td>
</tr>
<tr>
<td></td>
<td>pPEP</td>
<td>GACCAGATCCAAATCAG</td>
</tr>
<tr>
<td></td>
<td>eGFP 5' R</td>
<td>AAGTCGTCGTGCATCTG</td>
</tr>
<tr>
<td></td>
<td>eGFP 5' F</td>
<td>TGGTCGTCTGTAGAAACC</td>
</tr>
<tr>
<td></td>
<td>eGFP mid R</td>
<td>GTCTCTCTTGAGATCGATGC</td>
</tr>
<tr>
<td>GFP</td>
<td>pCLF</td>
<td>GTCGCGCGAGATGTACAGTA</td>
</tr>
<tr>
<td></td>
<td>CLFg</td>
<td>AAGAAACTTGTAGTCCCGC</td>
</tr>
<tr>
<td>Mutant xrn2-1 (SALK)</td>
<td>RP_xrn2-1</td>
<td>CATCTCGATCCAGAGAGAG</td>
</tr>
<tr>
<td></td>
<td>LP_xrn2-1</td>
<td>GGATGACCAGAAACTGACCA</td>
</tr>
<tr>
<td>Mutant xrn3-3 (SAIL)</td>
<td>RP_xrn3-3</td>
<td>GCCCTGAGCTTTACAGG</td>
</tr>
<tr>
<td></td>
<td>LP_xrn3-3</td>
<td>GAAATCGAACAAATCCG</td>
</tr>
<tr>
<td>Mutant xrn4-5 (SAIL)</td>
<td>LP_xrn4-5</td>
<td>GTTTCTGGGTTGAGACCTC</td>
</tr>
<tr>
<td></td>
<td>RP_xrn4-5</td>
<td>TCACTAGACAAATCTGGAGG</td>
</tr>
<tr>
<td>Mutant vtc2 (EMS créant un site restriction Hind III)</td>
<td>vtc2 R</td>
<td>TGAGGCAACACACAGCAC</td>
</tr>
<tr>
<td></td>
<td>vtc2 F</td>
<td>CTTTTCTGGTCAGTTCAC</td>
</tr>
<tr>
<td>Mutant nrt2.1-2 (SALK)</td>
<td>nrt2.1-2 L</td>
<td>TCATCCGCGGAAATCCAAC</td>
</tr>
<tr>
<td></td>
<td>nrt2.1-2 R</td>
<td>ATGATCCACACGTCACAA</td>
</tr>
<tr>
<td>tDNA SAIL</td>
<td>LB1_SAIL</td>
<td>GCCTTTCGAAAAAGATAGAATAGGCTTGGCTTCC</td>
</tr>
<tr>
<td>tDNA SALK</td>
<td>Lb1.3</td>
<td>ATTTGGGCGATTCTGGAGAAC</td>
</tr>
</tbody>
</table>
absolu suivi d'une centrifugation de 5 minutes à 14000 rpm. L'éthanol est alors retiré à la pipette et le culot laissé sécher sur la paillasse. Une fois sec, il est repris dans 30μL d'eau milli Q.

Suite à un croisement, l'homozgytose des lignées promoteur-rapporteur est vérifiée par qPCR. De ce fait, l'ADNg est extrait à l'aide du kit DNeasy plant mini (QIAGEN) selon les instructions du fournisseur. Ce kit est également utilisé pour extraire l'ADNg des plantes servant à l'analyse de l'état de méthylation de l'ADN.

3.2. PCR

La réaction PCR s'effectue dans des racks de 8 tubes contenant chacun 23μL de mélange réactionnel (contenant la Go Taq G2 DNA polymerase, Promega) et 2μL de matrice (ADN extrait d'un échantillon). Le programme est le suivant : dénaturation de deux minutes à 95°C suivi de 35 cycles [95°C 30 secondes, hybridation des amorces à 55°C 30 secondes, elongation à 72°C avec une durée variable selon la taille du fragment à amplifier : 1min/kb] et un temps d'elongation final de 1 minute à 72°C.

3.3. qPCR

Les amorces utilisées ont été dessinées à l'aide du logiciel en ligne primer3 plus. Les couples d’amorces choisis amplifient des fragments de 100-150 pb dans différentes régions du gène ou du promoteur en fonction de l'objectif de la manipulation. Différentes concentrations de matrices d'ADN génomique ou complémentaire (selon la visée des amorces testées) ont été mises en présence des différentes amorces afin de tester leur efficacité d'amplification. Les amorces ayant une efficacité supérieure à 90% sont retenues. La liste des amorces utilisées en qPCR est donnée dans le Tableau 2.5.

L’amplification est réalisée dans une plaque qPCR de 384 puits avec un intercalant de l’ADN fluorescent (SYBR®Premix Ex Taq™ (TliRNase H Plus), Bulk, TaKaRa) et d’un LightCycler (LightCycler 480, Roche) dans 10μl de mélange réactionnel contenant 1 à 2μL d'ADN (selon la quantité obtenue), 5μL de préparation Sybr Green, et 3μL d'amorces (à 1μM). Le programme est le suivant : pré-incubation 30 secondes à 95°C, 42 cycles d'amplification [5s 95°C, 10s 60°C et 30s à 72°C] puis 5s à 95°C suivit de 1 min à 65°C pour les courbes de fusion (meltingcurve). Une courbe de fusion est donc réalisée pour vérifier la présence d'un unique amplicon. Le calcul des Cp (crossing-point) est réalisé par le logiciel (selon la
Tableau 2.5 : Présentation des différentes amorces utilisées en qPCR, dont celles présentées dans l’article (Chapitre 3, paragraphe 2.1).
Les amorces permettant d’amplifier les contrôles positifs ou négatifs sont griséès.

<table>
<thead>
<tr>
<th>Gène ciblé</th>
<th>AGI</th>
<th>Reverse / Forward</th>
<th>Séquence</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUC 5'</td>
<td>-</td>
<td>R</td>
<td>GGTGTGGAGCAAGATGGAT</td>
<td>RT- & ChiP-qPCR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>TCAAAGGAGCAACTGTTGG</td>
<td></td>
</tr>
<tr>
<td>GUS (a) 5'</td>
<td>-</td>
<td>R</td>
<td>ACAGTTTCCGCTACGAGAC</td>
<td>RT- & ChiP-qPCR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>TGGTCGCTCCTGTTGAGAACC</td>
<td>ChIP-qPCR (H3K36me3)</td>
</tr>
<tr>
<td>GUS (b) corps du gène</td>
<td>-</td>
<td>R</td>
<td>TCGGCTTTAACAGGGGATTTAG</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>TTGATGCTGCTACCTTACC</td>
<td>ChIP-qPCR</td>
</tr>
<tr>
<td>GFP 5'</td>
<td>-</td>
<td>R</td>
<td>AAGTTGCTGCTGCTAAGT</td>
<td>RT-, ChiP-, and McrBc-qPCR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>ACGTAAACGCGCAAGTTTTC</td>
<td>ChIP-qPCR</td>
</tr>
<tr>
<td>ProNRT2.1 (a)</td>
<td>AT1G08090</td>
<td>R</td>
<td>AGGACTTCCGAGACAGTGTAG</td>
<td>ChIP-qPCR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>ACAAAAGGTCGTCCTCAGGGAAGA</td>
<td>ChIP-, and McrBc-qPCR</td>
</tr>
<tr>
<td>ProNRT2.1 (b)</td>
<td>AT1G08090</td>
<td>R</td>
<td>TCAGTGCTGACAGTGTCTTCT</td>
<td>ChIP-qPCR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>AGTTGAGAGTCGTCCTTACC</td>
<td>ChIP-qPCR</td>
</tr>
<tr>
<td>ProNRT2.1 (c)</td>
<td>AT1G08090</td>
<td>R</td>
<td>CTACCTTCCTCTCATCTGTC</td>
<td>ChIP-qPCR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>TTGTTGGGACTACCCAGGAGGAGGA</td>
<td>ChIP-qPCR</td>
</tr>
<tr>
<td>pNRT2.1 (d)</td>
<td>AT1G08090</td>
<td>R</td>
<td>GGGTCTCAGAGCTGTGTTGA</td>
<td>ChIP-, and McrBc-qPCR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>TTGGAAAGATAGCCGACA</td>
<td>ChIP-qPCR</td>
</tr>
<tr>
<td>NRT2.1 (e)</td>
<td>AT1G08090</td>
<td>R</td>
<td>TCGAATACGCCAGTCGTTCT</td>
<td>ChIP-qPCR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>TGGGTAGTCTAAGGGAGGGA</td>
<td>ChIP-qPCR</td>
</tr>
<tr>
<td>NRT2.1 5' (f)</td>
<td>AT1G08090</td>
<td>R</td>
<td>GTTAGCTTCCTCCTGTTCT</td>
<td>RT- & ChiP-qPCR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>CTACCTTCCTCCTTACCTCCT</td>
<td>(histone marks)</td>
</tr>
<tr>
<td>NRT2.1 (g)</td>
<td>AT1G08090</td>
<td>R</td>
<td>ATGGAGATGCCAGTGTTAAGA</td>
<td>ChIP-qPCR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>GTGGTAGATCTTGTTGATGGA</td>
<td>ChIP-qPCR</td>
</tr>
<tr>
<td>NRT2.1 (h)</td>
<td>AT1G08090</td>
<td>R</td>
<td>CTGCTTCTCCTTCTATCGTCCT</td>
<td>ChIP-qPCR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>AAAAGGCTTACCGGAGGAG</td>
<td>ChIP-qPCR</td>
</tr>
<tr>
<td>CYP708A2/THAH1 (5')</td>
<td>AT5G48000</td>
<td>R</td>
<td>GGCACCCCAAAAGGTCCTCT</td>
<td>ChIP-qPCR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>TAATGGCAATGTGGCCGGGTA</td>
<td>ChIP-qPCR</td>
</tr>
<tr>
<td>ZOG and Fe(II)-dependent oxygenase superfamily protein (5')</td>
<td>AT1G52820</td>
<td>R</td>
<td>TCGAAAGGAGGCTCTGTTGA</td>
<td>ChIP-qPCR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>GGGTTCGCAAGAATCTCCTCT</td>
<td>ChIP-qPCR</td>
</tr>
<tr>
<td>CYP712A1 (5')</td>
<td>AT2G42250</td>
<td>R</td>
<td>ACCTGCTGAATGTAAGGATTA</td>
<td>ChIP-qPCR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>AAGGTTGCCAATGGAATGGA</td>
<td>ChIP-qPCR</td>
</tr>
<tr>
<td>ZOG and Fe(II)-dependent oxygenase superfamily protein (5')</td>
<td>AT2G36690</td>
<td>R</td>
<td>GGGGAGCTTCTTCTTTGTTT</td>
<td>ChIP-qPCR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>AATGATAGCTCAGGTTGATG</td>
<td>ChIP-qPCR</td>
</tr>
<tr>
<td>THIC (5')</td>
<td>AT2G29630</td>
<td>R</td>
<td>TTGGTAGATCTTGTTTGTAAGA</td>
<td>ChIP-qPCR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>CCTGCTGATGGCAAAAAGAAGA</td>
<td>ChIP-qPCR</td>
</tr>
<tr>
<td>LEC2 (5')</td>
<td>AT1G28300</td>
<td>R</td>
<td>TCACTGCGCCCGGCTCTCCT</td>
<td>RT- & ChiP-qPCR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>CGTCGCGATCTCAGTGCAGTG</td>
<td>ChIP-qPCR</td>
</tr>
<tr>
<td>ACT7 (5')</td>
<td>AT5G09810</td>
<td>R</td>
<td>AGGCACAAGGAGCAGAAGGC</td>
<td>ChIP-qPCR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>GCATGCGCTTGGTTTCTCTG</td>
<td>ChIP-qPCR</td>
</tr>
<tr>
<td>ACT2 (corps du gène)</td>
<td>AT3G18780</td>
<td>R</td>
<td>CCGCCGCACTCGCTCCTTCCT</td>
<td>RT-, ChiP-, and McrBc-qPCR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>GCCATCATAGCAGTGTGCTCCT</td>
<td>ChIP-qPCR</td>
</tr>
<tr>
<td>CACTA-like transposase family</td>
<td>AT4TE09085</td>
<td>R</td>
<td>AGCTGGAGAGGATTGTTG</td>
<td>McrBc-qPCR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>CGGGTGTAGATGCTCGGTTGG</td>
<td>McrBc-qPCR</td>
</tr>
<tr>
<td>LBD37</td>
<td>AT5G67420</td>
<td>R</td>
<td>CAAAGCAGGAGTTGAGAACTC</td>
<td>RT-qPCR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>ATTTGGAGAACGCCGAGGTA</td>
<td>RT-qPCR</td>
</tr>
<tr>
<td>LBD38</td>
<td>AT3G49940</td>
<td>R</td>
<td>AAGTGGATGAGATGTTGCTG</td>
<td>RT-qPCR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>GGCGCTTGTACGCTCCTGTA</td>
<td>RT-qPCR</td>
</tr>
<tr>
<td>LBD39</td>
<td>AT4G37580</td>
<td>R</td>
<td>AGTTGCTTGTACCCAAACACTC</td>
<td>RT-qPCR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>CTCCAGGAGCTGTGTTTTCT</td>
<td>RT-qPCR</td>
</tr>
<tr>
<td>NLP7</td>
<td>AT4G24020</td>
<td>R</td>
<td>CAGCTGCTGAGGAGAGAAGAAGG</td>
<td>RT-qPCR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>TTCCAGGAGCTGGAGGAAAAATGT</td>
<td>RT-qPCR</td>
</tr>
<tr>
<td>NAR2.1</td>
<td>AT5G50200</td>
<td>R</td>
<td>TGAGGCTTACGCTGATTACAA</td>
<td>RT-qPCR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>GCCAAGGATACGTGGACATACC</td>
<td>RT-qPCR</td>
</tr>
<tr>
<td>TGA 1</td>
<td>AT5G65210</td>
<td>R</td>
<td>CTTTATTACTCAGAGTCTCCTGT</td>
<td>RT-qPCR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>GAACCAAGCTGAGGATTGTA</td>
<td>RT-qPCR</td>
</tr>
<tr>
<td>TGA4</td>
<td>AT5G10030</td>
<td>R</td>
<td>TATGTGCTGTTCTCTCATACT</td>
<td>RT-qPCR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>TTCTTGGTCGAACAAACTCT</td>
<td>RT-qPCR</td>
</tr>
<tr>
<td>NRT1.1</td>
<td>AT2G12110</td>
<td>R</td>
<td>GCAATGCGGACTAGGGTTTGT</td>
<td>RT-qPCR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>CTAATCCCCACCTCGCTCA</td>
<td>RT-qPCR</td>
</tr>
</tbody>
</table>
méthode de la seconde dérivée) puis les données sont traitées à l'aide d'un tableur excel. Pour chaque échantillon, une répétition technique a été effectuée.

4. Analyse des niveaux de transcrits

4.1. Extraction des ARNm totaux

Les échantillons sont broyés au broyeur à billes (30s ; fréquence/s : 25) puis 1mL de TRI REAGENT est ajouté au broyat. Le mélange obtenu est homogénéisé puis laissé 5 minutes à température ambiante. 200μL de chloroforme sont ajoutés afin d'obtenir des phases de séparation puis les échantillons sont centrifugés à 12000g et à 4°C pendant 15 minutes. La phase aqueuse contenant les ARNs est transférée dans un nouveau tube où l'on ajoute 500μL d'isopropanol afin de précipiter les ARNs. Après cinq minutes d'attente, les ARNs totaux sont culottés par une centrifugation à 12000g et à 4°C pendant 10 minutes. Le culot est lavé à l'éthanol 75% par centrifugation de 5 minutes à 12000g. Après élimination de l'éthanol, le culot est laissé sécher avant d'être repris dans 10μL d'eau ultra pure et placé dans la glace.

Une quantification des ARNs totaux est réalisée par spectrophotométrie à 260 nm (NANODROP 1000 spectrometer, Thermo Scientific) et les résultats sont analysés avec le logiciel ND-1000 V3.7.1 (Thermo Scientific, Wilmington, USA). La pureté des ARNs est vérifiée par la mesure des ratios DO260/DO280 et DO260/DO230 qui doivent être ≥2. La quantité d'ARN totaux des différents échantillons est alors ajustée avec de l'eau pour avoir un volume final de 8μL. Ces 8μL sont alors traités avec de la DNase (RQ1RNase-free Promega) et incubés 30 minutes à 37°C. 1μL de solution stop est alors ajouté puis les échantillons sont incubés 10 minutes à 65°C.

4.2. Run-on

Le protocole de Run-on présenté infra est adapté des publications suivantes : Meng & Lemaux 2003 ; Kanazawa, 2000 ; Ding et al. 2012 ; Patrone et al. 2000. Il comprend trois grandes étapes : isolement des noyaux, transcription dans ces noyaux in vitro (incorporation d'UTP biotinylés), purification des ARN néosynthétisés (biotinylés). Après broyage, la poudre de racines est resuspendue par inversion dans 8 mL de tampon permettant l'isolation des noyaux (NucleiIsolationBuffer, NIB : [20mM PIPES-KOH pH7, 1M hexylene glycol, 10mM MgCl2, 0.1mM EGTA, 15mM NaCl, 60mM KCl, 0.5% Triton X100, 5mM β-mercaptoethanol, Protease inhibitor cocktail 1tab complete for 50mL (Roch))] avant d'être
Chapitre 2 Analyse des niveaux de transcrits

centrifugé à 4°C 10 minutes à 1000g. Pour la suite, toutes les centrifugations sont réalisées à 4°C. Le surnageant est éliminé et le culot est resuspendu dans 1 mL de tampon NIB. Avant la transcription, le culot est d'abord rincé avec du tampon de transcription 1.3X [65mM TrisHCl pH 8, 6.5mM MgCl₂, 6.5 mM KCl] et centrifugé 2 minutes à 1000g. Le culot est resuspendu dans 75μL de tampon de transcription et mis en présence de 0.75mM (final) de rNTP (A, C et G, promega) et 0.25mM de biotin-16-UTP (Roche). La transcription est réalisée à 30°C pendant 40 minutes sous légère agitation. Cette réaction est stoppée par ajout de 1mL de TRIzol. Les ARN totaux sont isolés selon le protocole d'extraction présenté en 4.1 avec une digestion DNase (sans ajustement des quantités) puis purifiés par RNeasy plus micro kit (QIAGEN). Avant l'immobilisation des ARN biotinylés à l'aide de billes magnétiques de streptavidine (Dynabeads® M-280 streptavidin, Invitrogen), ces dernières sont lavées et traitées pour être exempt de RNAse (solution A [0.1M NaOH, 0.05M NaCl dans de l’eau DEPC] ; et B [0.1M NaCl dans de l’eau DEPC]). Elles sont ensuite resuspendues dans du tampon « Binding and washing 2X » (B&W : [10mM Tris-HCl (pH 7.5), 1mM EDTA et 2M NaCl]) avec deux fois le volume d’origine. Un volume équivalent d’ARN biotinylé dans de l’eau distillé est ajouté au volume de billes dans le but de diluer le tampon B&W à 1X (NaCl à 1M pour une liaison optimale) puis les échantillons sont incubés 25 minutes à température ambiante sur une roue. Les complexes billes-ARN sont lavés trois fois avec du tampon B&W 1X. Les complexes sont resuspendus dans 14µL d’eau et soumis à une rétro-transcription en présence des billes.

4.3. Rétro-transcription des ARN et qPCR

4.3.1. Rétro-transcription des ARNm totaux et nucléaires

La rétro-transcription des ARNm totaux et nucléaires est catalysée par la M-MLV reverse transcriptase (M-MLV reverse transcriptase, RNase H minus, Point Mutant, Promega) selon les instructions du fournisseur pour une rétro-transcription réalisée en deux étapes. Brièvement, les ARNs sont incubés pendant 5 min à 72°C en présence de 20pmol d’oligonucléotides poly-dT (ARNs Totaux) ou d’amorces aléatoires (ARNs nucléaires potentiellement non épissés et sans poly A) puis laissés 5 min dans la glace. L’enzyme est ensuite ajouté dans les échantillons qui sont alors incubés pendant 10 min à 42°C puis 50 minutes à 50°C. Après inactivation de l’enzyme 15 minutes à 70°C, les ADNc ainsi obtenus sont dilués 4 fois.
Figure 2.1 : Principe de l’INTACT (Isolation of Nuclei TAgged from specific Cell Types).

(A) Représentation de la construction présente dans ces lignées. Nous avons utilisé des anticorps dirigés contre la GFP dans le but de purifier les noyaux marqués à la GFP.

(B) Illustration du comportement des lignées dont nous disposons, sur 0,3 mM KNO₃. Cortex : pPEP::NTF, cellules compagnes du phloème : pSUC2::NTF, poils absorbants : pEXP7::NTF.

(C) Photographie des complexes [billes/anticorps (Ac) dirigés contre la GFP avec les noyaux marqués GFP et coloré ici au DAPI] (selon la zone d’activité du promoteur présenté en B) réalisée par Marquès-Bueno et al. 2016. Une fois purifiés, les noyaux sont traités en ChIP à partir de l’étape de sonication.
4.3.2. qPCR

Dans le cas de l'analyse de l'expression, pour chaque échantillon un delta Cp (dcp) est calculé en soustrayant la moyenne obtenue entre les répétitions techniques de notre gène d’intérêt avec celle d’un gène de référence (ACTIN2). L'accumulation relative est alors calculée ($2^{-	ext{dcp}}$). De façon à avoir un pourcentage d'expression par rapport à notre référence, cette accumulation relative est multipliée par cent.

4.4. Stabilité des transcrits (Actinomycine D)

La stabilité des transcrits est mesurée grâce à l’utilisation d’un inhibiteur de la transcription : l’actinomycin D (Sigma A4262). Les plantes cultivées en hydroponie sont mises en présence de 50µg/mL d’actinomycine D (dans du milieu de culture) à différents pas de temps, de telle sorte que tous les points soient prélèvés en même temps. Les ARN sont extraits et quantifiés par RT-qPCR. Les valeurs obtenues sont normalisées par le niveau de transcrits de l’ACT2 puis par la valeur initiale d’accumulation sans actinomycine D (point t0). La pente de la régression linéaire (définie par au moins 6 mesures au sein de chaque expérience) permet de calculer le temps de demi-vie de chaque transcrit selon l’équation : $t_{1/2} = \ln 2 / \text{(pente)}$.

5. Isolation de noyaux tissus spécifiques (INTACT)

Deux grammes de racines, issues de plantes âgées de 6 semaines cultivées en hydroponie, sont utilisés pour purifier les noyaux selon le protocole de Marquès-Bueno et al. (2016) en utilisant des anticorps anti GFP (Abcam ab290). Les noyaux sont comptabilisés à l’aide d’une cellule de Malassez sous un microscope épifluorescent (Olympus BX61). Environ 500 000 noyaux spécifiques d’un type cellulaire sont resuspendus dans du tampon de lyse nucléaire [50mM Tris-HCl pH8 ; 10mM EDTA ; 1% SDS ; Protease Inhibitor : 1 pilule diluée (Roche Biochemicals "mini-tab") ; H2O milli Q] avant d’être soumis à la sonication et au protocole d’immunoprécipitation de la chromatine décrit ci-dessous. La description des lignées et les grandes étapes de ce protocole sont présentées dans la Figure 2.1.
6. Analyse de l'état chromatinien

6.1. Immuno-précipitation de la chromatine (ChIP) et qPCR

Les expériences de ChIP ont été réalisées selon le protocole publié par Gendrel et al. 2002 avec des modifications mineures. Les noyaux sont isolés à l’aide du tampon NIB (voir composition en 4.4) puis resuspendus dans du tampon de lyse nucléaire (voir composition au paragraphe 5) avant d’être soniqués. La chromatine est précipitée à l’aide de 2.5 µg d’anticorps dirigés contre : H3 (ab1791), H3K27me3 (millipore polyclonal 07-449), H3K4me3 (Diagenode polyclonal C15410030), H3K36me3 (Abcam ab9050), H3K9ac (Agrisera AS163198), CFP ::CLF (Chromotek GFP-Trap_MA, gtma-20). L’ADN immunoprécipité est alors purifié à l’aide du kit Ipure (Diagenode) selon les instructions du fournisseur et quantifié par qPCR. La liste des amorces utilisées est donnée dans le Tableau 2.5. Pour les résultats de qPCR, un delta Cp (dcp) est calculé en soustrayant la moyenne obtenue entre les répétitions techniques pour une immunoprécipitation avec celle obtenue pour l'input (après ajustement de l'input à 100%). Dans le cadre de l'analyse des modifications mises en place sur l'histone H3, la normalisation est réalisée par les valeurs obtenues de l'immunoprécipitation réalisée avec l'anticorps anti H3 à la place de celles de l'input. L’enrichissement en marque chromatinienne à un locus est exprimé en calculant le pourcentage d'input ou de H3 (2^{\text{dcp}} x 100). Le gène LEC2 (LEAFY COTYLEDON 2), est utilisé en témoin positif d'enrichissement en H3K27me3 et les gènes ACTINE 7 (pour les marques en 5') et ACT2 (pour H3K36me3 dans le corps du gène) sont utilisés comme contrôle positif pour l’enrichissement en marques activatrices (H3K4me3, H3K36me3 et H3K9ac).

6.2. Méthylation de l'ADN (McrBC)

Après extraction de l’ADN avec le kit DNeasy plant mini (QIAGEN), chaque ADN est soumis à 2 réactions. La première avec l’enzyme McrBC (new england Biolabs) et la deuxième avec un volume équivalent d’eau (sans enzyme). Afin que les échantillons soient traités de la même manière, un mélange réactionnel commun (H2O, BSA, Buffert, GTP le tout à 1x) sans l’enzyme ou l’eau est réalisé, puis divisé en deux. Le volume d’enzyme ou d’eau est alors ajouté et mis en présence de l’ADN (entre 17 et 35ng selon les manipulations). La digestion s’effectue sur la nuit à 37°C. Une dose d’enzyme ou d’eau est rajoutée le matin et laissée agir 1h de plus. La réaction est ensuite stoppée à 65°C pendant 20 minutes. Le niveau de méthylation de l’ADN est analysé par qPCR en normalisant chaque échantillon traité à la
McrBC par celui traité à l’eau (dCP). Cette normalisation donne le pourcentage d’ADN non méthylé. Pour avoir le pourcentage d’ADN méthylé, on retire cette valeur à 100 (correspondant à un ADN méthylé à 100%). Dans cette expérience l’ACT2 nous sert de contrôle d’ADN non méthylé et l’élément transposable AT4TE09085 (CACTA-like transposase family) nous sert de contrôle d’ADN méthylé.

7. Dosages des ROS et du H2O2

Environ 30 mg de racines broyées sont repris dans 500 μL de tampon KRGP pH 7,4 [145mM NaCl, 4.86mM KCl, 5.5 mM glucose, 5.7mM K2PO4, 1.22mM MgSO4] et centrifugés à froid à 12000g pendant 5 minutes. La partie aqueuse est alors transférée dans un nouveau tube. Le dosage des ROS s’effectue avec le réactif DFFDA (Life sciences) et celui de H2O2 avec le réactif Horseradish Peroxidase (kit AmplexRed, Life sciences). Les milieux réactionnels de chaque dosage sont préparés de la façon suivante : 20μM DFFDA et 50μM AmplexRed avec 0,1U/mL HRP. Pour normaliser le dosage de H2O2, une gamme est préparée en parallèle à partie d’une solution stock de H2O2 à 20mM (0, 0.004, 0.02, 0.1, 0.5, 5, 50μM). Dans une plaque de microtitration, 50μL de chaque échantillon sont répartis dans chaque puits et 100μL de milieu réactionnel correspondant sont ajoutés. La plaque est ensuite incubée à l’obscurité durant 30 minutes à température ambiante. L’absorbance est mesurée au VICTOR2 TM (MULTILABEL COUNTER, Life sciences) avec une longueur d’émission de 580 nm et une longueur d’excitation égale à 540nm. Les résultats sont exprimés en μM de H2O2 produit/g de matière fraîche et en RFU/mg de matière fraîche pour les ROS.

8. Analyse de l’architecture racinaire

Les plantes sont semées sur milieu gélosé à 1mM KNO3 (selon le paragraphe 2.1), en absence ou présence de 0.1% de sucre. Au bout de 5 jours de croissance, elles sont transférées sur un nouveau milieu gélosé avec la source et la quantité de N souhaitée (20 plantes par conditions). La position de l’apex est marquée (marque de transfert) afin de ne considérer que la partie de la racine qui s’est développée après le transfert. Après 5 jours supplémentaires de croissance, les boîtes sont scannées (Epson perfection V850 pro, logiciel : epson scan avec une résolution de 600ppp et 48 bit couleur) dans le but de mesurer la longueur de la racine primaire à l’aide du logiciel image J. Les plantes sont prélevées individuellement (coupure au
Figure 2.2 : Présentation des repères visuels ayant permis de définir les différents stades de développement des primordia, notamment pour ceux en dehors du plan d’observation, durant notre étude.
X : xylème ; P : péricycle ; En : endoderme ; C : cortex ; Ep : épiderme.
La coloration verte des cellules ou tissus renseigne les repères utilisés pour la définition des stades qui sont précisés sous chaque stades.
D’après Malamy & Benfey, 1997.
niveau de la marque de transfert) et placées dans de l’ETOH à 20% pour être observées au microscope à transmission de champs plein (BH2, Olympus).

Les différents stades de développement des primordia (stade I au stade racine latérale) sont comptabilisés au microscope (BH2, Olympus) selon Malamy & Benfey (1997). Les primordia n’étant pas toujours dans le plan d’observation, des repères ont été utilisés pour définir le stade des primordia légèrement hors plan (d’après Malamy & Benfey 1997) (Figure 2.2). Malgré ces repères, certain primordia n’ont pas pu être classés. Ils sont tout de même comptabilisés en tant que primordia hors plan afin d’être considéré comme des primordia initiés (pris en compte dans les calculs de la densité d’initiation ainsi que dans la normalisation par le nombre total de primordia initiés).

9. Coloration GUS et sections transversales

9.1. Coloration GUS

Les plantes sont prélevées puis préfixées 45 min à température ambiante dans [50mM NaPO₄ pH7, 1.5% formaldehyde, 0.05% TritonX100]. Afin d’optimiser la fixation, une infiltration de 5 minutes dans une cloche à vide est réalisée, puis la cloche est progressivement remise à pression atmosphérique. Les plantes sont lavées trois fois dans [50mM NaPO₄ pH7 en présence de 0.05% de Triton X100]. Les plantules sont ensuite incubées dans la solution de coloration [50mM NaPO₄pH7, 0.5mM ferricyanide, 0.5mM ferrocyanide, 0.05% TritonX100, 1mM X-Gluc] 30 minutes sous vide puis 2h à 37 °C en plaque 24 puits. Les tissus sont alors lavées deux fois dans du tampon phosphate de sodium 50mM pH 7 puis une troisième fois pendant 5 min. Dans le cas des inclusions en résine, les plantes sont à nouveau fixées 15 min sous vide dans [2% paraformaldehyde, 0.5% glutaraldehyde, 100mM NaPO₄pH7] puis 24h 4°C. La solution de fixation (inclusion) ou de coloration (observation simple à la loupe et/ou au microscope BH2) est retirée et les échantillons sont progressivement déséhydratés dans l’éthanol (EtOH) : 30 min dans 50% puis 30 min dans 70%, 30 min dans 80% 15 min dans 95% qui est renouvelé et laissé 30 min supplémentaires puis 15min avec du 100%, qui est renouvelé deux fois 30 min et enfin pendant la nuit à 4°C. Dans le cas d’observation à la loupe (Olympus SZX16 équipée d’objectifs 0.5x et 1.6x, d’une source lumineuse X-cite série 120et d’une caméra Olympus DP72), les plantes sont progressivement réhydratées et observées dans de l’EtOH 20%.
9.2. Inclusion en résine et coupes transversales

Les plantules soumises à des inclusions en résine sont maintenues dans l’EtOH 100% et découpées en fragment de 1 cm (seules les racines seront incluses en résine). NRT2.1 n’étant pas exprimé dans la pointe racinaire, la pointe racinaire et la partie mature de la racine sont placées dans des puits différents pour être traitées séparément. Après une déshydratation sur la nuit dans l’EtOH 100%, les sections de racines sont soumises à deux heures d’incubation sous agitation dans un milieu composé du milieu d’imprégnation (résine liquide technovit, labonord et initiateur) et d’EtOH 100% (V : V). Les racines sont ensuite incubées 2 jours dans du milieu d’imprégnation pur à 4°C.

L’inclusion est réalisée dans des moules de petite taille (longueur 1.5cm, largeur 0.6cm et profondeur 0.3cm) dans lequel on place d’abord un peu de résine (milieu d’imprégnation avec accélérateur) puis les racines en les orientant en fagots. De la solution est ensuite rajoutée pour remplir le moule à ras bord. La polymérisation se faisant en absence d’oxygène, les moules sont placés dans une boîte de pétri carré et laissés sous la hotte le temps de polymériser en surface (entre 1 et 2h de par la toxicité de la résine à l’état liquide). Par la suite, les boîtes sont sellées avec du parafilm et placées à l’étuve 37°C pendant 7 jours. Les blocs sont ensuite découpés transversalement au microtome (Leica RM2165) en sections de 5 et 8µm. Les coupes sont récupérées à la pince et transférées au pinceau sur une lame, contenant de l’eau, placée sur un portoir à 37°C. En parallèle de la découpe des observations au microscope à transmission de champs plein (BH2) sont réalisées afin de repérer les zones d’intérêts. Une fois sèches, les lames sont conservées sans lamelle. Pour les observations, de l’eau et une lamelle sont ajoutées puis retirées après observation. Les images sont prises à l’aide d’une caméra couleur (cam color view soft imaging system) pilotée par le logiciel Cell^A.

10. Analyse in silico

L’ensemble des calculs (architecture racinaire, sortie de qPCR etc.) ont été réalisé sur Excel. Les résultats présentés (moyenne et erreur standard) sont basés sur au moins deux expériences indépendantes. Les différences significatives sont calculées sur au moins trois expériences indépendantes par un test T de Student à deux exemples selon une distribution unilatérale (*p < 0.05, **p < 0.01, ***p < 0.001.).
Dans le but de chercher les cibles directes de HNI9 sur HN, les données du transcriptome de Widiez et al. (2011) (Affymetrix) ont été analysées en recherchant les gènes induits sur HN chez WT et qui ne le sont plus dans un fond mutant hni9-1. Pour ce faire, nous avons défini, selon ces critères de recherches, un profil contrasté (allumé ou éteint) avec un coefficient de corrélation fort (Pearson correlation de 0.9). Une liste de 108 gènes est ainsi obtenue. L’analyse de leur catégorie fonctionnelle a été réalisée à l’aide des logiciels Biomaps de Virtual Plant et BiNGO de Cytoscape.

L’intersection de différentes listes de gènes a été obtenue en ligne à l’aide du site http://bioinformatics.psb.ugent.be/webtools/Venn/

11. Analyse de la spécificité tissulaire par microscopie

Le comportement des lignées INTACT en hydroponie (chez les sauvages) et dans un fond clf-29, a été étudié à l’aide de deux microscopes dans le but de vérifier leurs spécificités cellulaires. Le premier est un microscope inversé axio observer 7 (Zeiss/Apotome) piloté par le logiciel Zen et équipé d’un filtre GFP (Ex : BP 470/40, BS FT 495, Em : BP 525/50), d’une caméra Hamamatsu (ORCA-Flash4.0 LT), d’une source X-cite (120 LED mini) et d’une grille high, permettant de réaliser des coupes optiques.

Le deuxième, est un microscope confocal inversé leica TCS SP8 avec diviseur de faisceau acousto optique (AOBS), piloté par le logiciel LAS X. La GFP est excité à 488 nm par une source Argon, et son émission est filtrée par une bande passante de 505-540. Le signal est collecté par un détecteur hybride (HyD). L’ouverture du diaphragme (pinhole) est paramétrée à 1 Airy. Cet appareil a également été utilisé, avec les même paramètres, pour analyser l’activité du promoteur NRT2.1 sur HN dans la lignée pNRT2.1::GFP (présenté dans le Chapitre 5, Figure 5.2).
Chapitre 3

Analyse du rôle de PRC2 dans la régulation transcriptionnelle de $NRT2.1$
1. Contexte

Chez une lignée sauvage cultivée sur une condition nutritionnelle en N totalement répressive pour l'expression de \textit{NRT2.1} (10mM NH$_4$NO$_3$, HN), l'équipe a observé que l'extinction de l'activité du promoteur \textit{NRT2.1} est associée à un enrichissement en marques chromatiniennes répressives H3K27me3 (Widiez et al. 2011). Ce résultat a suggéré que la dynamique H3K27me3 pourrait intervenir dans la répression ou le maintien de la répression de \textit{NRT2.1} sur cette condition fortement répressive. Chez les eucaryotes, les gènes transcriptionnellement réprimés sont corrélés à un enrichissement en H3K27me3 (établi par PRC2) alors que les gènes exprimés sont corrélés aux marques H3K4me3, H3K36me3 et H3K9ac (Roudier et al. 2011 ; Malapeira et al. 2012) (voir Chapitre 1 paragraphe 2.2). Cependant, l'importance de la dynamique H3K27me3 dans la réponse et l'adaptation des plantes aux variations nutritionnelles reste encore à déterminer. De ce fait, l'objectif principal de ma thèse a été d'étudier la contribution de la dynamique H3K27me3 dans la réponse aux variations en nutrition azotée chez Arabidopsis, au travers l'étude du principal transporteur racinaire de nitrate, \textit{NRT2.1}. Chez Arabidopsis, PRC2 dispose de trois H3K27 tri-méthyltransférases: CURLY LEAF (CLF), SWINGER (SWN) et MEDEA (MEA). MEA est impliquée durant le développement embryonnaire alors que CLF et SWN sont impliquées durant le développement végétatif (Mozgova & Hennig 2015). Ainsi, dans le but d'étudier le rôle de H3K27me3 dans la régulation transcriptionnelle de \textit{NRT2.1}, nous avons choisi une approche de génétique inverse en utilisant des mutants perte de fonction pour CLF (clf-29), SWN (swn-3) ainsi que le double mutant. Afin d'étudier l'impact de la perte des H3K27me3 sur l'activité du promoteur \textit{NRT2.1}, et analyser si \textit{NRT2.1} est soumis à une régulation tissus-sépique liée à PRC2, nous avons introduit par croisement ces mutations dans différentes lignées promoteur-rapporteur \textit{pNRT2.1(456pb)}::GUS, \textit{pNRT2.1(1201pb)}::LUC et enfin \textit{pNRT2.1(1974pb)}::GFP.

Cette analyse fera l’objet d’un article (partie 2.1), qui sera soumis pour publication après la remise de ce manuscrit, et dont nous présenterons brièvement infra les principaux résultats, révélant un rôle original de CLF et de la marque H3K27me3 au locus \textit{NRT2.1}.

L'analyse sur condition répressive (10mM NH$_4$NO$_3$, HN) a révélé que CLF est la méthyltransférase majoritaire dans ce modèle mais que la perte des H3K27me3 n'est pas suffisante pour induire l’expression de \textit{NRT2.1} ou des lignées promoteur-rapporteur utilisées. De façon inattendue, notre analyse sur condition très permissive pour l’expression de \textit{NRT2.1}
(0.3mM KNO₃, LN) révèle un rôle de CLF dans la modulation de l'activité du promoteur \textit{NRT2.1} dans les tissus où il est fortement exprimé, indépendamment de la concentration en azote. Cette modulation permettrait d'éviter une trop forte activité transcriptionnelle au locus \textit{NRT2.1}. Une analyse \textit{in silico} plus générale révèle que d'autres gènes très fortement exprimés comme \textit{NRT2.1} présentent des enrichissements en H3K27me3, et certains sont également soumis à une régulation par CLF.

En résumé, ce travail a permis de montrer que l'enrichissement en H3K27me3 au locus \textit{NRT2.1}, gène hyperactif en condition de limitation en nitrate, est un mécanisme majeur pour moduler l’activité de son promoteur, dans le but de "protéger" ce locus d’un silencing via la méthylation de l’ADN qui peut être déclenché par de trop forts niveaux de transcrits.

2. Résultats

2.1. Analyse du rôle de PRC2 dans la régulation transcriptionnelle de \textit{NRT2.1} en fonction des variations nutritionnelles en azote

(cf. article supra)
Polycomb Repressive Complex 2 acts as a safeguard for the expression of the very active gene NRT2.1 in Arabidopsis

Fanny Bellegarde¹, Léo Herbert¹, Erwann Caillieux², Jossia Boucherez¹, Cécile Fizames¹, François Roudier²,³, Alain Gojon¹, Antoine Martin¹*

¹ BPMP, CNRS, INRA, SupAgro, Univ. Montpellier, Montpellier, France.
² Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, ENS, 46 rue d’Ulm, 75005 Paris, France.
³ Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France.

*For correspondence: antoine.martin@supagro.fr

Running title:

PRC2 modulates the hyperactive expression of NRT2.1
Abstract

PRC2 is a major regulator of gene expression in eukaryotes. It catalyzes the repressive chromatin mark H3K27me3, which leads to very low expression of target genes. *NRT2.1*, which encodes a key root nitrate transporter in *Arabidopsis*, is targeted by H3K27me3, but the function of PRC2 on *NRT2.1* remains unclear. Here, we demonstrate that PRC2 directly targets and down-regulates *NRT2.1*, but in a context of very active transcription, where this gene is actually one of the most highly expressed genes in the transcriptome. Indeed, mutation of *CLF*, which encodes a PRC2 subunit, leads to loss of H3K27me3 at *NRT2.1* and results, exclusively under permissive conditions for *NRT2.1*, in a further increase in *NRT2.1* expression, specifically in tissues where *NRT2.1* is normally expressed. We also demonstrate that loss of H3K27me3 deposition at the *NRT2.1* promoter can ultimately lead to a switch to full silencing by DNA methylation. Therefore, our data indicate that PRC2 tempers the hyperactivity of *NRT2.1* in a context of very active transcription, to prevent excessive expression and subsequent silencing of this essential gene. This reveals a non-canonical function of PRC2 as a safeguard for the expression of highly expressed genes in *Arabidopsis*.
Introduction

Polycomb Repressive Complex 2 (PRC2) is a major and conserved regulatory complex of gene expression in eukaryotes. PRC2 is essential for growth and development, and in both plants and animals, loss-of-function of PRC2 subunits leads to serious phenotypic defects (Margueron and Reinberg, 2011; Mozgova and Hennig, 2015). PRC2-mediated regulation of gene expression relies on the modification of chromatin state, by catalyzing the tri-methylation of Lys 27 of histone H3 (H3K27me3). Point mutation in H3K27 leads to similar phenotypes to those of PRC2 mutants, demonstrating that H3K27me3 is the main effector of PRC2-mediated regulation (Pengelly et al., 2013). In Arabidopsis, CURLY LEAF (CLF) and SWINGER (SWN) are two different PRC2 enzymatic subunits that tri-methylate H3K27 in vegetative tissues (Mozgova and Hennig, 2015). CLF and SWN are thought to have overlapping functions, but the predominant contribution of CLF to H3K27me3 enrichment, as well as the more severe phenotype of clf mutant plants compared to that of swn mutant plants, suggest that CLF is the major H3K27 tri-methyltransferase during Arabidopsis vegetative development (Chanvivattana et al., 2004; Wang et al., 2016). Although the molecular mechanisms by which PRC2 and H3K27me3 mediate transcriptional regulation are not fully understood, a large number of epigenomic analyses have demonstrated that H3K27me3 and PRC2 members are associated with strong repression of gene expression (Roudier et al., 2011; Sequeira-Mendes et al., 2014; Turck et al., 2007; Wang et al., 2016; Zhang et al., 2007). In the Arabidopsis genome, 20-25% of genes are marked by H3K27me3 and globally display low to very low expression (Roudier et al., 2011; Sequeira-Mendes et al., 2014), and mutations in CLF leads to up-regulation of several hundreds of H3K27me3-associated genes (Liu et al., 2016; Wang et al., 2016).

Most of the genes controlled by PRC2-mediated H3K27me3 levels in Arabidopsis correspond to genes involved in the regulation of development, and in particular transcription factors (Lafoş et al., 2011; Roudier et al., 2011; Turck et al., 2007; Wang et al., 2016; Zhang et
One of the best described examples corresponds to the repression of the *FLOWERING LOCUS C (FLC)* gene. *FLC* repression depends on H3K27me3 enrichment, and further experiments have demonstrated that *FLC* exists in bistable on/off expression states whether it is marked or not by H3K27me3, suggesting that H3K27me3 is a major molecular determinant of strong gene repression (Angel et al., 2011; Angel et al., 2015). On the other hand, H3K27me3 levels have been also proposed to quantitatively regulate gene expression. This has been notably illustrated by the effect of mutations for *PRC2* subunits in the control of the rate of induction of the *VIN3* gene in response to cold treatment (Jean Finnegan et al., 2011).

PRC2 target loci also often correspond to genes showing tissue-specific expression. Such genes are heavily marked with H3K27me3 in the tissues where they are silent, and at the reverse largely depleted in H3K27me3 enrichment in tissues where they are normally expressed (Deal and Henikoff, 2010; Lafos et al., 2011). Accordingly, numerous studies have described in *Arabidopsis* that loss of *PRC2*-mediated regulation leads to an aberrant expansion of the expression territory of tissue-specific genes (Berger et al., 2011; de Lucas et al., 2016; Goodrich et al., 1997; Liu et al., 2016; Makarevich et al., 2006). Altogether, the observations listed above led to the conclusion that *PRC2* and associated H3K27me3 enrichment are strong negative transcriptional regulators ensuring the correct spatio-temporal pattern of expression of developmental genes. Nevertheless, decrease in *PRC2*-mediated H3K27me3 levels on target genes is not systematically associated with increase in gene expression or modifications of tissue-specific expression pattern (Aichinger et al., 2011; Bouyer et al., 2011; Farrona et al., 2011).

In *Arabidopsis*, *NRT2.1* encodes a key high-affinity root nitrate (NO$_3^-$) transporter, crucial for root uptake of NO$_3^-$ and thus for nitrogen (N) nutrition of the plant (Cerezo et al., 2001; Filleur et al., 2001). Accordingly, *nrt2.1* mutants show a dramatic reduction of growth under low and limiting NO$_3^-$ provision (Cerezo et al., 2001; Lezhneva et al., 2014; Orsel et al.,
In agreement with its major physiological role, the *NRT2.1* gene is strongly regulated at the transcriptional level by environmental factors affecting root NO$_3^-$ uptake (Nacry et al., 2013). In particular, *NRT2.1* is very differentially expressed depending on the level of N supply, with very low expression under N-rich media, and exceptionally high expression under low and limiting NO$_3^-$ availability (Girin et al., 2010). In addition, *NRT2.1* displays a very strict tissue-specific transcriptional profile, with expression confined to the outer layers of the root tissues (Girin et al., 2007; Nazoa et al., 2003). It has been recently observed that *NRT2.1* is marked by H3K27me3 (Roudier et al., 2011; Zhang et al., 2007), indicating that PRC2 activity could be a potential determinant of the repression of *NRT2.1* gene expression under N-rich condition (Widiez et al., 2011). In contrast to the regulation of genes involved in cell differentiation and plant development, the role of PRC2 in the regulation of environmentally-responsive and nutrition-related genes like *NRT2.1* remains to be fully investigated.

To address this question, we investigated in details the role of H3K27me3 and PRC2 in the regulation of *NRT2.1* expression both under strongly repressive (high N supply) or highly inductive (low NO$_3^-$ availability) conditions. We unexpectedly found that PRC2 downregulates *NRT2.1* expression only in a context of very active transcription, and specifically in tissues where *NRT2.1* is highly expressed. We demonstrate that loss of H3K27me3 under conditions triggering very active expression results in a further increase in *NRT2.1* promoter activity, which ultimately can lead to a switch to full silencing by DNA methylation. We thus reveal here a non-canonical role for PRC2 in modulating the transcriptional level of *NRT2.1* specifically under conditions where it is one of the most highly expressed genes in *Arabidopsis* roots.

Results

PRC2 directly regulates *NRT2.1* in a context of very active expression
Figure 1

A *High Nitrogen*

B *Low Nitrate*

C

- 1 kb

<table>
<thead>
<tr>
<th>Gene</th>
<th>WT</th>
<th>clf-29</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT7</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>LEC2</td>
<td>50</td>
<td>40</td>
</tr>
<tr>
<td>NRT2.1</td>
<td>60</td>
<td>50</td>
</tr>
</tbody>
</table>

- NRT2.1
- ACT7
- LEC2

% H3K27me3/H3
NRT2.1 is differentially expressed depending on the level of N supply, with very low expression under N-rich media, and very high expression under low and limiting NO$_3^-$ availability (Girin et al., 2010). To investigate the role of PRC2 in NRT2.1 regulation, we measured H3K27me3 enrichment at the NRT2.1 locus in WT and mutant lines for CLF and SWN, under highly contrasted conditions for expression, and compared it with an actively transcribed gene (ACT) or a known PRC2 target gene (LEC2). Under N-rich repressive condition, H3K27me3 enrichment at the NRT2.1 locus was indeed elevated in the roots of a WT line, and significantly reduced in clf-29 mutant but not in swn-3 mutant (Figure 1A, and Figure S1 for information about primers position). Under a NO$_3^-$ limiting environment, which corresponds to the most favorable condition for NRT2.1 expression (Girin et al., 2007), we surprisingly also observed a strong H3K27me3 enrichment at the NRT2.1 locus, similar to those recorder for typical PRC2-controlled genes such as LEC2 (Figure 1B). This was totally unexpected as, strikingly, NRT2.1 is ranked among the 3 most highly expressed genes in the whole Arabidopsis root transcriptome obtained under exactly the same NO$_3^-$ limiting condition (Table S1). Under NO$_3^-$ limitation, H3K27me3 levels at the NRT2.1 locus were also significantly diminished in clf-29, and not in swn-3 (Figure 1B), revealing that CLF is the main methyltransferase operating at the NRT2.1 locus. In order to have a more entire view of the effect of clf mutation at the NRT2.1 locus, we screened the whole locus for H3K27me3 enrichment in WT and clf-29 lines. Reduction of H3K27me3 enrichment at the NRT2.1 locus in clf-29 was found throughout all the locus, but the extent of the reduction was maximal at the promoter region (Figure 1C). When we measured NRT2.1 transcript levels in WT, clf-29 and swn-3 lines, we observed that decrease in H3K27me3 levels under N-rich repressive conditions did not lead to induction of NRT2.1 expression, which is, under this condition, still close to zero in mutant lines for PRC2 components (Figure 2A). Surprisingly, and unlike under repressive N-rich condition, we observed that the reduction of H3K27me3 enrichment in clf-29 mutant
Figure 2

A. ProNRT2.1:GUS (Low Nitrate)

- WT
- clf-29
- swn-3

B. GUS transcript (% ACT2)

C. % H3K27me3/H3

- WT
- clf-29

- GUS
- LEC2
- ACT2

NRT2.1 transcript (% ACT2)

High Nitrogen Low Nitrate

0, 0.3, 0.9

0, 30, 60, 90

0, 20, 40, 60

0, 5, 10, 15

0, 10, 20, 30, 40, 50, 60
under NO$_3^-$ limitation led to significantly higher $NRT2.1$ transcripts level than in the WT line (Figure 2A). This unexpectedly suggests that PRC2, and in particular CLF, regulates $NRT2.1$ in a context of very active expression. Since we observed that the effect of clf mutation on H3K27me3 enrichment at the $NRT2.1$ locus was maximal at the promoter region, we crossed the clf-29 mutant line with the reporter construct $ProNRT2.1:GUS$ (Girin et al., 2007). $ProNRT2.1:GUS$ reporter gene has been previously characterized, and faithfully transposes the transcriptional regulations targeted to $NRT2.1$, including N-responsiveness and tissue-specificity expression (Girin et al., 2007). We compared, specifically under NO$_3^-$ limitation, changes in transcript levels and H3K27me3 enrichment at the $ProNRT2.1:GUS$ locus in WT and clf-29 plants. Under NO$_3^-$ limitation, we observed in the clf-29 mutant a strong increase in GUS transcripts level (Figure 2B). Strikingly, the induction of GUS expression in clf-29 was higher than the one of $NRT2.1$, again suggesting that the regulation mediated by CLF is mainly directed to the promoter activity. In agreement with these observations, we actually found a strong H3K27me3 enrichment at the GUS locus in a WT line, and a reduction of this enrichment in the clf-29 mutant (Figure 2C). This means that the $NRT2.1$ promoter is able to instruct H3K27me3 enrichment to downstream sequences, and that the $ProNRT2.1:GUS$ follows the same behavior as $NRT2.1$ in response to clf mutation.

To support the observation that CLF regulates $NRT2.1$ in a context of very active expression, we checked the presence of CLF at the $NRT2.1$ locus in this condition. We therefore performed ChIP using a $ProCLF:CFP:CLF;clf$-29 line (de Lucas et al., 2016) to test whether $NRT2.1$ is bound by CLF. In comparison to negative and positive controls, we found that CLF indeed associates with the $NRT2.1$ locus (Figure S2). As mutations in CLF leads to up-regulation of several hundreds of genes, we also checked that the expression of transcriptional regulators of $NRT2.1$ under NO$_3^-$ limitation was not perturbed in clf-29. We therefore measured, in WT and clf-29 lines, transcript levels for the main transcriptional regulators of $NRT2.1$ that
Figure 3

A

% H3K4me3/H3

WT
clf-29

NRT2.1 GUS LEC2 ACT7

B

% H3K36me3/H3

WT
clf-29

NRT2.1 GUS LEC2 ACT7

C

% H3K3ac/H3

WT
clf-29

NRT2.1 GUS LEC2 ACT7
have been previously identified (Bellegarde et al., 2017). None of the NRT2.1 transcriptional regulator that we tested shows a significant de-regulation in clf-29 (Figure S3), strongly reinforcing the idea of a direct action of CLF-PRC2 in the regulation of NRT2.1 under highly permissive condition for expression.

To further analyze the chromatin-based regulation of NRT2.1 by CLF under highly inductive conditions, we analyzed specifically under NO₃⁻ limitation the pattern of chromatin marks associated with transcriptional activation. In the WT, NRT2.1 was surprisingly not much enriched in H3K4me3, H3K36me3 and H3K9ac (Figures 3A, 3B and 3C), in spite of very high expression levels. In the clf-29 mutant, reduction of H3K27me3 level and higher transcripts level were not associated with an increase in any of the chromatin marks associated with transcriptional activation (Figures 3A, 3B and 3C). We observed for active chromatin marks at the ProNRT2.1::GUS the same profile as the one observed at the NRT2.1 locus, except a significant increase in H3K9ac enrichment in clf-29, in agreement with a higher induction of expression for ProNRT2.1::GUS than for NRT2.1 (Figure 3C). This suggests that reduction of H3K27me3 is by itself the cause of the overexpression of NRT2.1. All together, these results led us to conclude that the absence of functional PRC2, and subsequent reduction in H3K27me3 levels, have for consequence to increase NRT2.1 expression, exclusively under highly permissive NO₃⁻ limiting condition.

PRC2 modulates the expression of NRT2.1 specifically in NRT2.1-expressing tissues

PRC2 and associated H3K27me3 enrichment are strong negative transcriptional regulators, which also ensure the correct spatio-temporal expression pattern of target genes. We therefore addressed the question whether down-regulation of NRT2.1 by CLF under highly inductive condition corresponds to transcriptional repression in tissues where NRT2.1 is not expressed, or to modulation of expression in tissues where NRT2.1 is strongly expressed. Since
Figure 4

(A)

(B)

(C)

(D)
ProNRT2.1::GUS faithfully transposes chromatin-based regulation of NRT2.1 by CLF, we first performed transversal root sections using the WT or clf-29 lines containing the ProNRT2.1::GUS reporter grown under highly inductive NO$_3^-$ limiting condition. In the WT, as previously described, we observed that NRT2.1 expression is confined, in a very strict manner, to the outer tissues of the root (cortex and epidermis) (Figure 4A). Strikingly, NRT2.1 expression in clf-29 was similarly confined in cortex and epidermis, showing that tissue-specific expression of NRT2.1 is maintained in spite of a decrease in H3K27me3 enrichment. On the other hand, we observed in clf-29 specifically and homogeneously in every cortex or epidermis cell a strong increase in GUS staining, reflecting the overexpression ProNRT2.1 activity in these tissues (Figure 4B). This demonstrates that H3K27me3 directly targets NRT2.1 and regulates its expression in the tissues where it is strongly expressed. To test further this hypothesis, we used the INTACT method (Deal and Henikoff, 2011) to analyze NRT2.1 chromatin states at a tissue-specific resolution. In order to have access to chromatin states in cortical cells, where NRT2.1 is predominantly expressed (Girin et al., 2007), we used a line in which the INTACT cassette is driven by the cortex-specific PEP promoter (Marques-Bueno et al., 2016). Importantly, the cortex-specific expression of the PEP promoter was maintained under NO$_3^-$-limiting condition (Figure S4). In contrast with our observations in whole roots (Figure 2A), we found that NRT2.1 is indeed strongly marked by H3K4me3 in the cortex (Figure 4C). We next looked at H3K27me3 enrichment at the NRT2.1 locus in cortical cells, and we observed, in agreement with our previous results, that NRT2.1 is also marked by H3K27me3 in this tissue (Figure 4D). Altogether, our results demonstrate that the level of H3K27me3, which has been fully characterized as a repressive chromatin mark associated with strongly repressed genes, directly modulates the expression of NRT2.1, one of the most highly expressed genes in the transcriptome under limiting NO$_3^-$ availability.

Loss of H3K27me3 can lead to silencing by DNA methylation
Figure 5

A: Transcripts levels (% ACT2)

B: % of DNA methylation
Since the regulation of NRT2.1 by CLF seems to be essentially directed to the promoter activity, we next analyzed the impact of a loss of H3K27me3 in the clf-29 mutant on different ProNRT2.1 reporter genes, according to their level of expression observed in the WT. To do this, we used, in addition to the ProNRT2.1:GUS reporter line, two other lines containing ProNRT2.1:LUC or ProNRT2.1:GFP (Girin et al., 2010; Kiba et al., 2012). These 3 transcriptional reporters have increasing promoter lengths leading to low (ProNRT2.1:GUS), average (ProNRT2.1:LUC) or high expression (ProNRT2.1:GFP) when expressed in the WT genetic background (Figure S5). For the ProNRT2.1:LUC reporter line, we observed an increase in LUC transcript level in the clf-29 mutant as compared to the WT background, confirming our observations made on NRT2.1 and ProNRT2.1:GUS (Figure S6). The data obtained with the ProNRT2.1:GFP reporter gene showed that its activity, although very high in the WT background, was strikingly reduced to almost zero in the clf-29 mutant (Figure 5A). Such full transcriptional extinction is reminiscent of a drastic silencing by DNA methylation, we thus measured the level of DNA methylation at ProNRT2.1:GFP in WT and clf-29 lines. In comparison to negative (ACT2) and positive (AT4TE09085) controls for DNA methylation, we observed that ProNRT2.1:GFP was indeed strongly targeted by DNA methylation, specifically in clf-29 (Figure 5B). Both NRT2.1 promoter and GFP sequences were targeted by DNA methylation. This suggests that the reduction of H3K27me3 at the ProNRT2.1:GFP locus in clf-29 has led to transcriptional overexpression of this hyperactive promoter, which caused an excessive accumulation of transcripts and in turn the establishment of silencing by DNA methylation at this locus.

Very active genes targeted by H3K27me3 are principally involved in response to stimulus, metabolism, and nutrition

The modulation of expression of the NRT2.1 promoter by PRC2 appears to be an essential safeguard mechanism to avoid transcriptional runaway and silencing that can lead to
dramatic phenotypes, especially in the case of genes vital for plant physiology like \textit{NRT2.1}. Our results thus demonstrate a non-canonical role for PRC2 and H3K27me3 in the modulation of hyperactive gene expression. In order to explore the extent of this original function for PRC2, we compared the profile of highly expressed genes in the \textit{Arabidopsis} root transcriptome (Widiez et al., 2011) with the genome-wide distribution of H3K27me3 in the roots (Roudier et al., 2011). We used in this case the transcriptome of plants grown under N-rich condition in order to match with the conditions used to perform the epigenomic map. We observed that, among the 10% most highly expressed genes in the transcriptome, 139 genes are targeted by H3K27me3 (Figure 6, Table S2). This amount and the corresponding proportion are obviously much lower than for very poorly expressed genes (7 \% in comparison to 38\%), but it suggests that the regulation identified using \textit{NRT2.1} may affect a substantial number of genes. We also analyzed whether highly expressed genes marked by H3K27me3 could be down-regulated by CLF, as we observed for \textit{NRT2.1}. We therefore crossed the list of highly expressed genes marked by H3K27me3 with the genes regulated by CLF in \textit{Arabidopsis} roots (Liu et al., 2016). Only 9 of the 139 highly expressed genes marked by H3K27me3 were found to be regulated by CLF (Figure 6, Table S2). However, this proportion is in fact similar to that of weakly expressed genes (61 genes regulated by CLF on 803 genes with very low expression in the roots and marked by H3K27me3). Most interesting is the finding that the functional categories of hyperactive genes targeted by H3K27me3 in \textit{Arabidopsis} roots are different from those of low expression genes marked by H3K27me3 (Table S3). Indeed, the set of low expression genes targeted by H3K27me3 is principally enriched in genes involved in the regulation of development, transcription and gene expression, as previously described (Lafos et al., 2011; Roudier et al., 2011; Wang et al., 2016). In contrast, the list of very highly expressed genes targeted by H3K27me3 shows a significant enrichment in genes involved in metabolic processes and response to diverse stimuli (Table S3). In particular, it included gene categories
Figure S1

- **NRT2.1**
 - e: H3K27me3/H3K4me3/H3K9ac
 - g: H3K36me3

- **LEC2**
 - Positive control H3K27me3
 - Negative control H3K4me3, H3K36me3 and H3K9ac

- **ACT7**
 - Positive control H3K4me3 and H3K9ac

- **ACT2**
 - Positive control H3K36me3
 - Negative control H3K27me3

- **ProNRT2.1:GUS**
 - a: H3K27me3, H3K4me3 and H3K9ac
 - b: H3K36me3
related to nitrate transport and assimilation, as well as several other processes linked to mineral nutrition and secondary metabolism (Table S3). Such observation lends support to the conclusion that this non-canonical regulation by PRC2 in plants could affect in majority genes that are relevant to plant physiology and to response to the environment, including those linked to the essential function that is mineral nutrition.

Discussion

An unusual chromatin state controls the high expression of \textit{NRT2.1} under limiting \textit{NO}_3^–

\textit{NRT2.1} is a major root \textit{NO}_3^– transporter and is essential for plant growth under limiting \textit{NO}_3^– availability (Cerezo et al., 2001; Filleur et al., 2001; Lezhneva et al., 2014). The molecular mechanisms that control the level of \textit{NRT2.1} expression are therefore crucial for plant growth and development. We show here that \textit{NRT2.1} expression, which is one of the highest in the transcriptome, is modulated by PRC2, a chromatin-based regulator of gene expression known to be associated with strong gene repression. Examination of \textit{NRT2.1} chromatin state reveals that this locus is targeted by H3K27me3 under both repressive and inductive conditions for gene expression, mainly directed by CLF. Decrease in H3K27me3 levels did not lead to induction of \textit{NRT2.1} expression under repressive conditions. These observations lend support to the conclusion that H3K27me3 enrichment is not the main determinant of \textit{NRT2.1} repression under N-rich condition, and are in agreement with the global view that loss of H3K27me3 alone is generally not sufficient to lead to a gain of expression (Bouyer et al., 2011). Unexpectedly, in a context of very active expression, loss of H3K27me3 leads to further increase in \textit{NRT2.1} expression. This reveals a greatly unusual H3K27me3 targeting for such a very highly expressed gene. We also observed that chromatin marks associated with active transcription, which would have been expected to be strongly present at \textit{NRT2.1}, were surprisingly low at this
Figure S2

Act2LeC2Nrt2.1

CFL enrichment (% input)
locus. A strong enrichment of H3K27me3 at \textit{NRT2.1} could explain such observation, at least for H3K36me3, which has been shown to be mutually exclusive with H3K27me3 (Yang et al., 2014). However, a dilution of \textit{NRT2.1}-expressing cells in chromatin analysis performed with whole roots may also explain the lower than expected enrichment in chromatin marks associated with active transcription at the \textit{NRT2.1} locus. Indeed, the level of H3K4me3 was much higher when we analyzed it on \textit{NRT2.1}-expressing cells. Nevertheless, our results reveal a totally unusual chromatin state with high level of H3K27me3 and H3K4me3, and an original function for PRC2 in the regulation of the target gene. Interestingly, \textit{NRT2.1} is expressed in cortical and epidermal root cells, which are highly endoreplicated (Dietrich et al., 2017; Ikeuchi et al., 2015). It will be interesting to analyze \textit{NRT2.1} chromatin state and regulation by PRC2 taking account of genome copies in cortical or epidermal polyploid cells.

\textbf{Additional mechanisms than PRC2 modulate the high expression of \textit{NRT2.1}}

Our results reveal that \textit{NRT2.1} promoter under highly active condition for expression is sufficient to drive H3K27me3 targeting to downstream sequences, and show that the effect of \textit{clf} mutation occurs mainly at the level of promoter activity. Moreover, the induction of expression following loss of H3K27me3 varies substantially between \textit{NRT2.1} and reporters of \textit{NRT2.1} promoter activity. Indeed, induction of \textit{ProNRT2.1:GUS} expression was clearly higher than the one observed for \textit{NRT2.1} itself. This might translate additional mechanisms of transcriptional or post-transcriptional modulation targeted specifically to \textit{NRT2.1} gene body or to \textit{NRT2.1} mRNA. In addition, although regulation by CLF seems clearly directed to the \textit{NRT2.1} promoter region, a larger genomic context at the \textit{NRT2.1} locus is certainly also important for the regulation of its expression, and for the regulation by chromatin complexes. It is for instance interesting to observe that, although under repressive conditions, local chromatin interactions have been identified at the \textit{NRT2.1} locus (Veluchamy et al., 2016), suggesting that chromatin conformation may have an influence on the expression of \textit{NRT2.1}.

Figure S3

WT clf-29

Transcripts levels (% ACT2)

LBD37 LBD38 LBD39 TGA1 TGA4 NRT1.1 NLP7 NAR2.1

WT clf-29
The presence of multiple safeguard mechanisms to protect essential genes sounds actually logical, as silencing of *NRT2.1* would come down to the impossibility for plants to survive in the majority of soil environments (Nacry et al., 2013).

H3K27me3 can ultimately lead to targeting by DNA methylation silencing

Our work suggests that H3K27me3 might be a safeguard for the expression of hyperactive genes like *NRT2.1*. We demonstrate that loss of H3K27me3 in *clf-29* can ultimately lead the *ProNRT2.1:GFP* locus to be targeted by DNA methylation silencing, which has irreversible and deleterious effect for expression. We observed the switch from loss of H3K27me3 to DNA methylation in *clf-29* for the *ProNRT2.1:GFP* line, which is by far, the *NRT2.1* promoter reporter that generates the highest level of transcripts. This underpins that a critical threshold of transcripts, such as the one reached in *ProNRT2.1:GFP* line, is required to switch from very high expression to transcriptional runaway and silencing by DNA methylation in *clf-29*. This is on the whole reminiscent of the mechanism by which a transposable element generates a threshold of transcript accumulation above which gene silencing by DNA methylation is triggered (Mari-Ordonez et al., 2013). We did not observe DNA methylation at the *NRT2.1* locus in *clf-29* (data not shown), presumably because the induction of *NRT2.1* expression is lower than for promoter reporters, and therefore does not produce a sufficient accumulation of transcripts in *clf-29*. In addition, a recent work reporting the DNA methylation landscape of the *fie* mutant indicates that loss of PRC2 activity does not significantly modify the profile of DNA methylation through the genome (Bouyer et al., 2017). This further suggests that, in the case of highly active genes marked by H3K27me3, some regulatory mechanisms other than PRC2 also contribute to maintain their expression below a threshold beyond which gene silencing might be triggered. Therefore, this finding is so far limited to transgenes, and it will be essential to assess in which conditions or genotypes it can also affect genes.
Nevertheless, it demonstrates that PRC2 can modulate the expression of highly expressed genes, and that the loss of H3K27me3 can lead to gene silencing by DNA methylation.

Highly expressed genes marked by H3K27me3 are principally involved in mineral nutrition and metabolism

Our analysis of previously published datasets reveals that a considerable number of genes showing very high expression also display H3K27me3 targeting. Although we cannot rule out that this overlap could be due to a combination of different cell types in which genes are either highly expressed or marked by H3K27me3, it supports the possibility that our observations made on the regulation of NRT2.1 apply to many other genes. Interestingly, genes that would be targeted by this regulation fall into specific functional categories. Most of them are directly involved in metabolic processes, including mineral nutrition. These genes may be representative of fundamental mechanisms, for which a balance between high expression and gene integrity would be essential for plant physiology. In conclusion, our work provides the first example of a totally unexpected function of PRC2 in Arabidopsis in the modulation of one of the most highly expressed gene in the transcriptome, in a context of very active transcription. This study opens an original way for further investigation concerning the role of PRC2 as a safeguard of highly expressed genes.

Material and Methods

Plant material and growth conditions

The Arabidopsis thaliana accession used in this study was Col-0. Mutant alleles and transgenic plants used in this study are clf-29 (Xu and Shen, 2008), swn-3 (Chanvivattana et al., 2004), ProNRT2.1:GUS (Girin et al., 2007), ProNRT2.1:LUC (Girin et al., 2010), ProNRT2.1:GFP (Kiba et al., 2012), ProCLF:CFP:CLF:clf-29 (de Lucas et al., 2016), ProPEP:NTF (Marques-Bueno et al., 2016). Most of experiments were performed using roots.
Figure S5

A

0.5 kb — GUS

1.2 kb — LUC

2 kb — GFP

B

Transcript Levels % ACT2

<table>
<thead>
<tr>
<th></th>
<th>GUS</th>
<th>LUC</th>
<th>GFP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>57</td>
<td>316</td>
</tr>
</tbody>
</table>
from 7 days-old seedlings grown under a long-day photoperiod (16 h light and 8 h dark) on vertical MS/2 plates without nitrogen (PlantMedia) supplied with 0.8 % agar, 0.1 % of sucrose, 0.5 g/L MES and the appropriate concentration of nitrogen as described in figure legends. For INTACT experiments, plants were grown under a short-day photoperiod (8h light and 16 h dark) for 6 weeks in hydroponics containing 0.3 mM KNO₃, as previously described (Lejay et al., 1999).

RNA extraction and expression analysis

Root samples were frozen in liquid nitrogen and total RNA was extracted using TRI REAGENT (MRC), DNase treated (RQ1 Promega), and reverse transcription was achieved with M-MLV reverse transcriptase (RNase H minus, Point Mutant, Promega) using an anchored oligo(dT)₂₀ primer. Accumulation of transcripts was measured by qRT-PCR (LightCycler 480, Roche Diagnostics) using the SYBR® Premix Ex Taq™ (TaKaRa). Gene expression was normalized using ACT2 as an internal standard. Sequences of primers used in qPCR for gene expression analysis are listed in Supplementary file 1.

ChIP experiments

ChIP experiments were performed as previously described (Gendrel et al., 2002) with minor modifications. Nuclei were isolated using Nuclei Isolation Buffer (20 mM PIPES-KOH pH 7.6, 1 M hexylene glycol, 10 mM MgCl₂, 0.1 mM EGTA, 15mM NaCl, 60 mM KCl, 0.5 % Triton X100, 5 mM beta-mercaptoethanol, protease inhibitor cocktail (complete tablets EASYpack, Roche)) and then resuspended in Nuclei Lysis Buffer. Chromatin was precipitated with 2.5 μg of antibodies against H3 (Abcam 1791), H3K27me3 (Millipore 07-449), H3K4me3 (Diagenode C15410030), H3K36me3 (Abcam 9050), H3K9ac (Agrisera AS163198). Immunoprecipitation of CFP::CLF was performed using GFP-Trap MA (Chromotek). Immunoprecipitated DNA was purified with IPURE Kit (Diagenode) and resulting DNA was analyzed by qPCR analysis. ChIP experiments were normalized using H3 level as an internal
Figure S6

ProNRT2.1:LUC

LUC Transcripts (%ACT2)

WT clf-29

**
standard. For CFP::CLF immunoprecipitation, experiments were normalized using an INPUT
(10% of sample adjusted to 100%). For INTACT experiments, data were presented as the ratio
of \(\frac{\text{NRT2.1}}{\text{Input}} \) to \(\frac{\text{reference gene}}{\text{Input}} \). Sequences of primers used in qPCR for ChIP
experiments are listed in Supplementary file 1.

INTACT

Nuclei were purified as previously described (Marques-Bueno et al., 2016). About
500,000 INTACT-purified nuclei from 2 g of roots were resuspended in Nuclei Lysis Buffer to
proceed to ChIP experiments.

GUS histochemical staining and Arabidopsis root cross-section

Plants were harvested and prefixed 45 minutes at room temperature in 50 mM NaPO\(_4\)
pH7, 1.5 % formaldehyde, 0.05 % Triton X100. Plants were washed 3 times in 50 mM NaPO\(_4\)
pH7 before staining in 50 mM NaPO\(_4\) pH 7, 0.5mM ferricyanide, 0.5mM ferrocyanide, 0.05 %
Triton X100, 1mM X-Gluc 30 minutes under vacuum following by 2 h incubation at 37°C.
Three other washes in 50 mM NaPO\(_4\) pH 7 are performed before another fixation under vacuum
for 15 minutes in 2 % paraformaldehyde, 0.5 % glutaraldehyde, 100 mM NaPO\(_4\) pH 7 following
by 24 h incubation at 4°C. Samples were cut into 1 cm fragments and mature parts of roots were
subjected to gradual dehydration to overnight incubation in 100% EtOH. Inclusions were
performed using Technovit 7100 cold-curing resin (*Heraeus Kulzer* performed according
manufacturer’s recommendations). Transversal sections of 5 µm were realized using a
microtome (*Leica* RM2165) and observed in water under BH2 microscope with color view soft
imaging system (camera) and Cell^A software.

Confocal microscopy

For confocal microscopy observations, seedlings were mounted on slides in osmosed
water, and pictures were captured by Leica SP8 with an objective 20X dry N.A.07 (*Leica*) under
Table S1: Part of the absolute expression values from transcriptomic experiments using Arabidopsis roots grown under limiting nitrate (Widiez et al., PNAS 2011). Data have been cleaned to remove ambiguous and no match probes. NRT2.1 (AT1G08090) is ranked at the 3rd position of the most highly expressed genes in the transcriptome.

<table>
<thead>
<tr>
<th>Rank</th>
<th>probe</th>
<th>AGI</th>
<th>LOG2.LN1</th>
<th>LOG2.LN2</th>
<th>LOG2.LN3</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>258588_s_at</td>
<td>AT3G04120</td>
<td>14.64642</td>
<td>14.40294</td>
<td>14.72627</td>
<td>14.59188</td>
<td>0.168425</td>
</tr>
<tr>
<td>2</td>
<td>252022_at</td>
<td>AT3G52930</td>
<td>14.48776</td>
<td>14.36532</td>
<td>14.60356</td>
<td>14.48554</td>
<td>0.119135</td>
</tr>
<tr>
<td>3</td>
<td>260623_at</td>
<td>AT1G08090</td>
<td>14.43071</td>
<td>14.42585</td>
<td>14.54885</td>
<td>14.46847</td>
<td>0.0696545</td>
</tr>
<tr>
<td>4</td>
<td>260746_at</td>
<td>AT1G78380</td>
<td>14.49038</td>
<td>14.27449</td>
<td>14.51088</td>
<td>14.42525</td>
<td>0.130966</td>
</tr>
<tr>
<td>5</td>
<td>259361_at</td>
<td>AT1G13440</td>
<td>14.50986</td>
<td>14.26819</td>
<td>14.47359</td>
<td>14.41721</td>
<td>0.130324</td>
</tr>
<tr>
<td>6</td>
<td>250099_at</td>
<td>AT3G09260</td>
<td>14.47928</td>
<td>14.25399</td>
<td>14.45486</td>
<td>14.39304</td>
<td>0.12158</td>
</tr>
<tr>
<td>7</td>
<td>267153</td>
<td>AT2G30860</td>
<td>14.2989</td>
<td>14.2045</td>
<td>14.32599</td>
<td>14.27646</td>
<td>0.06377</td>
</tr>
<tr>
<td>8</td>
<td>251409_at</td>
<td>AT3G60245</td>
<td>14.31824</td>
<td>14.16925</td>
<td>14.32077</td>
<td>14.26942</td>
<td>0.08765</td>
</tr>
<tr>
<td>9</td>
<td>260746_at</td>
<td>AT1G08090</td>
<td>14.43071</td>
<td>14.42585</td>
<td>14.54885</td>
<td>14.46847</td>
<td>0.0696545</td>
</tr>
<tr>
<td>10</td>
<td>259361_at</td>
<td>AT1G13440</td>
<td>14.50986</td>
<td>14.26819</td>
<td>14.47359</td>
<td>14.41721</td>
<td>0.130324</td>
</tr>
<tr>
<td>11</td>
<td>260623_at</td>
<td>AT1G08090</td>
<td>14.43071</td>
<td>14.42585</td>
<td>14.54885</td>
<td>14.46847</td>
<td>0.0696545</td>
</tr>
<tr>
<td>12</td>
<td>259361_at</td>
<td>AT1G13440</td>
<td>14.50986</td>
<td>14.26819</td>
<td>14.47359</td>
<td>14.41721</td>
<td>0.130324</td>
</tr>
<tr>
<td>13</td>
<td>260623_at</td>
<td>AT1G08090</td>
<td>14.43071</td>
<td>14.42585</td>
<td>14.54885</td>
<td>14.46847</td>
<td>0.0696545</td>
</tr>
<tr>
<td>14</td>
<td>259361_at</td>
<td>AT1G13440</td>
<td>14.50986</td>
<td>14.26819</td>
<td>14.47359</td>
<td>14.41721</td>
<td>0.130324</td>
</tr>
<tr>
<td>15</td>
<td>260623_at</td>
<td>AT1G08090</td>
<td>14.43071</td>
<td>14.42585</td>
<td>14.54885</td>
<td>14.46847</td>
<td>0.0696545</td>
</tr>
<tr>
<td>16</td>
<td>259361_at</td>
<td>AT1G13440</td>
<td>14.50986</td>
<td>14.26819</td>
<td>14.47359</td>
<td>14.41721</td>
<td>0.130324</td>
</tr>
<tr>
<td>17</td>
<td>260623_at</td>
<td>AT1G08090</td>
<td>14.43071</td>
<td>14.42585</td>
<td>14.54885</td>
<td>14.46847</td>
<td>0.0696545</td>
</tr>
<tr>
<td>18</td>
<td>259361_at</td>
<td>AT1G13440</td>
<td>14.50986</td>
<td>14.26819</td>
<td>14.47359</td>
<td>14.41721</td>
<td>0.130324</td>
</tr>
<tr>
<td>19</td>
<td>260623_at</td>
<td>AT1G08090</td>
<td>14.43071</td>
<td>14.42585</td>
<td>14.54885</td>
<td>14.46847</td>
<td>0.0696545</td>
</tr>
<tr>
<td>20</td>
<td>259361_at</td>
<td>AT1G13440</td>
<td>14.50986</td>
<td>14.26819</td>
<td>14.47359</td>
<td>14.41721</td>
<td>0.130324</td>
</tr>
</tbody>
</table>
control of the LAS X software supplied by the constructor. GFP was excited at 488 nm by argon source and re-emitted light was filtered by a passing band of 500 to 550 nm.

McrBC-based methylation assay

DNA was extracted by DNeasy plant mini kit (*QIAGEN*), and each sample were subjected to two reactions with or without McrBC (*NEB*) for overnight digestion. The reaction was stopped by 20 min incubation at 65°C. DNA methylation quantification are realized by qPCR using control samples (not treated with enzyme). Percentage of methylated DNA was calculated as $100-2^{\Delta Cp/100}$, where Cp is the threshold cycle; ΔCp is the difference of Cp between digested and mock samples.

Gene Ontology analysis

Gene ontology has been analyzed using BINGO under Cytoscape environment, using Biological Process file, and a significance level of 0.05.

Data analysis and presentation

Mean ± SE is shown for all numerical values, and based on at least 3 biological replicates. Statistical significance was computed using a two-tailed Student’s t-test. Significance cutoff: *p < 0.05, **p < 0.01, ***p < 0.001.

Author contributions

Acknowledgments

We thank every members of A.G. lab for discussion. This work was supported by a grant from the National Agency for Research (ANR) (ANR14-CE19-0008 IMANA to A.G.,
AT5G38030	AT2G23540	AT4G01450
AT4G12490	AT3G62580	AT2G39310
AT5G55180	AT3G16530	AT2G18370
AT5G64120	AT5G04950	AT5G23020
AT5G12420	AT5G54370	AT5G23020
AT4G08770	AT2G25980	AT2G21660
AT4G11650	AT5G66390	AT5G05080
AT5G44400	AT2G43590	AT2G43610
AT4G39940	AT3G54040	AT5G03990
AT4G18910	AT1G28290	AT2G24980
AT1G14960	AT1G23720	AT5G37690
AT4G37410	AT1G12200	AT5G47970
AT3G22570	AT5G9320	AT5G49000
AT1G19600	AT4G30450	AT2G22330
AT2G30210	AT5G54170	AT2G33340
AT3G17770	AT1G64780	AT3G45160
AT5G09510	AT3G25190	AT2G37130
AT3G16450	AT5G56080	AT1G70850
AT1G45145	AT4G12480	AT4G23700
AT3G22400	AT3G09220	AT3G50740
AT1G32450	AT4G31910	AT4G15390
AT2G02120	AT5G09480	AT5G62340
AT3G14310	AT1G73330	AT2G41800
AT4G11190	AT5G42180	AT4G39950
AT2G46750	AT1G78370	AT4G35880
AT3G01420	AT1G52060	AT2G33790
AT5G63560	AT4G30290	AT2G38530
AT2G01520	AT1G12110	AT5G01010
AT4G12470	AT5G27380	AT5G57785
AT1G55020	AT3G62680	AT1G58270
AT1G12900	AT4G23670	AT5G58860
AT5G37990	AT1G14120	AT1G15380
AT2G01120	AT4G09030	AT4G28940
AT5G01870	AT3G19710	AT1G75500
AT1G05260	AT5G64100	AT5G67990
AT1G72230	AT1G77760	AT4G29020
AT3G23430	AT1G52070	AT4G23680
AT2G05790	AT1G44800	AT1G62380
AT2G37040	AT2G3820	AT4G30170
AT2G19970	AT4G13770	AT5G23010
AT3G16240	AT2G14890	AT3G55120
AT5G38020	AT1G67870	AT5G35190
AT5G63600	AT5G48010	AT2G16005
AT1G14670	AT5G50200	AT2G28790
AT4G33420	AT2G02100	AT1G15380
AT2G02130	AT4G19030	AT1G27030
AT1G72030	AT3G21240	

Table S2 (part1/3) : (A) List of genes targeted by H3K27me3 among the 10 percent of genes the most highly expressed in the transcriptome. Data of H3K27me3 enrichment in the Arabidopsis roots are from Roudier et al. (EMBO J. 2011) (B) List of genes regulated by CLF among the list presented in A. Data of genes regulated by CLF in Arabidopsis roots are from Liu et al. (plant physiol. 2016).
A.M., C.F., E.C. and F.R.) and from INRA BAP department to A.M., A.G. and C.F. F.B. was the recipient of a PhD fellowship from INRA BAP department. We thank M. De Lucas, S. Brady (ProCLF:CFP:CLF;clf-29) and T. Kiba (ProNRT2.1:GFP) for materials. We thank C. Alcon, the Montpellier Rio Imaging platform, and the Plant Histocytology and cell imaging (PHIV) platform for microscopy observations and histocytology. The authors declare no conflict of interests.
AT1G68480	AT5G44830	AT1G22700	AT2G39550	AT1G73080	AT1G31650	AT1G16320	AT1G323900	AT1G343500	AT1G367900	AT1G368000	AT5G216900	AT1G328600	AT5G543200	AT1G569600	AT1G320000	AT5G389000	
AT1G27950	AT1G33640	AT1G228900	AT1G348800	AT1G16340	AT1G368000	AT1G343500	AT1G367900	AT1G368000	AT1G367900	AT1G368000	AT5G216900	AT1G328600	AT5G543200	AT1G569600	AT1G320000	AT5G389000	
AT1G67460	AT1G23270	AT1G699300	AT1G508400	AT1G189400	AT1G368000	AT1G367900	AT1G368000	AT1G367900	AT1G368000	AT5G216900	AT1G328600	AT5G543200	AT1G569600	AT1G320000	AT5G389000	AT1G320000	AT5G389000
AT1G30940	AT1G795900	AT1G160150	AT1G497710	AT1G528600	AT1G16320	AT1G323900	AT1G343500	AT1G367900	AT1G368000	AT1G367900	AT1G368000	AT5G216900	AT1G328600	AT5G543200	AT1G569600	AT1G320000	AT5G389000
AT1G02790	AT1G183900	AT1G348400	AT1G367900	AT1G368000	AT1G367900	AT1G368000	AT1G367900	AT1G368000	AT5G216900	AT1G328600	AT5G543200	AT1G569600	AT1G320000	AT5G389000	AT1G320000	AT5G389000	
AT1G31620	AT1G355900	AT1G402140	AT1G367900	AT1G368000	AT1G367900	AT1G368000	AT1G367900	AT1G368000	AT5G216900	AT1G328600	AT5G543200	AT1G569600	AT1G320000	AT5G389000	AT1G320000	AT5G389000	
AT1G35180	AT1G14000	AT1G304210	AT1G367900	AT1G368000	AT1G367900	AT1G368000	AT1G367900	AT1G368000	AT5G216900	AT1G328600	AT5G543200	AT1G569600	AT1G320000	AT5G389000	AT1G320000	AT5G389000	
AT1G39890	AT1G345800	AT1G367900	AT1G368000	AT1G367900	AT1G368000	AT1G367900	AT1G368000	AT5G216900	AT1G328600	AT5G543200	AT1G569600	AT1G320000	AT5G389000	AT1G320000	AT5G389000		
AT1G31710	AT1G355800	AT1G367900	AT1G368000	AT1G367900	AT1G368000	AT1G367900	AT1G368000	AT5G216900	AT1G328600	AT5G543200	AT1G569600	AT1G320000	AT5G389000	AT1G320000	AT5G389000		
AT1G40010	AT1G346200	AT1G367900	AT1G368000	AT1G367900	AT1G368000	AT1G367900	AT1G368000	AT5G216900	AT1G328600	AT5G543200	AT1G569600	AT1G320000	AT5G389000	AT1G320000	AT5G389000		

Table S2 (part 2/3): List of genes targeted by H3K27me3 among the 10 percent of genes the less expressed in the transcriptome. Data of H3K27me3 enrichment in the Arabidopsis roots are from Roudier et al. (EMBO J. 2011).
References

<table>
<thead>
<tr>
<th>Accession</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>At5g52760</td>
<td>Copper transport protein family</td>
</tr>
<tr>
<td>At5g22110</td>
<td>unknown protein</td>
</tr>
<tr>
<td>At2g23580</td>
<td>ABE4, ATME54, MES4, methyl esterase 4</td>
</tr>
<tr>
<td>At2g39620</td>
<td>DN11, 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein</td>
</tr>
<tr>
<td>At2g29500</td>
<td>Terpensoid cycloases family protein</td>
</tr>
<tr>
<td>At2g68370</td>
<td>NGO1, AP2/{beta}-like transcriptional factor family protein</td>
</tr>
<tr>
<td>At3g28660</td>
<td>P-loop containing nucleoside triphosphate hydrolases superfamily protein</td>
</tr>
<tr>
<td>At5g28520</td>
<td>Mannose-binding lectin superfamily protein</td>
</tr>
<tr>
<td>At5g39720</td>
<td>AtG2l, avirulence induced gene 2 like protein</td>
</tr>
<tr>
<td>At1g05960</td>
<td>AAE12, acyl activating enzyme 12</td>
</tr>
<tr>
<td>At3g80730</td>
<td>Plant invertase/pectin methyltransferase inhibitor superfamily</td>
</tr>
<tr>
<td>At4g23220</td>
<td>CRK14, cysteine-rich RLK (RECEPTOR-like protein kinase) 14</td>
</tr>
<tr>
<td>At1g39380</td>
<td>Rmic-like cupins superfamily protein</td>
</tr>
<tr>
<td>At3g53720</td>
<td>ATCHX20, CHX20, cation/H+ exchanger 20</td>
</tr>
<tr>
<td>At5g51850</td>
<td>K-box region and MADS-box transcription factor family protein</td>
</tr>
<tr>
<td>At4g37780</td>
<td>ATMYB87, MYB87, myb domain protein 87</td>
</tr>
<tr>
<td>At1g31670</td>
<td>Copper amine oxidase family protein</td>
</tr>
<tr>
<td>At1g96720</td>
<td>ATGSTU15, GSTU15, glutathione S-transferase TAU 15</td>
</tr>
<tr>
<td>At3g39800</td>
<td>DGL, alpha/beta-Hydrolases superfamily protein</td>
</tr>
<tr>
<td>At3g43520</td>
<td>Family of unknown function (DUF572)</td>
</tr>
<tr>
<td>At3g58780</td>
<td>AGL1, SHP1, K-box region and MADS-box transcription factor family protein</td>
</tr>
<tr>
<td>At4g10020</td>
<td>AHSOS5, HDS5, hydroxysteroid dehydrogenase 5</td>
</tr>
<tr>
<td>At5g0110</td>
<td>APUM15, PUM15, pumilco 18</td>
</tr>
<tr>
<td>At1g33760</td>
<td>Integrate-type DNA-binding superfamily protein</td>
</tr>
<tr>
<td>At2g32960</td>
<td>BGLU33, beta glucosidase 33</td>
</tr>
<tr>
<td>At4g02840</td>
<td>ACS11, 3-aminoacyclopropane-1-carboxylate synthase 11</td>
</tr>
<tr>
<td>At1g73510</td>
<td>unknown protein</td>
</tr>
<tr>
<td>At3g24130</td>
<td>Pectin lyase-like superfamily protein</td>
</tr>
<tr>
<td>At4g37710</td>
<td>VQ motif-containing protein</td>
</tr>
<tr>
<td>At5g26150</td>
<td>protein kinase family protein</td>
</tr>
<tr>
<td>At1g15670</td>
<td>Late embryogenesis abundant protein (LEA) family protein</td>
</tr>
<tr>
<td>At4g27010</td>
<td>Late embryogenesis abundant protein (LEA) family protein</td>
</tr>
<tr>
<td>At1g18710</td>
<td>ATMYB47, MYB47, myb domain protein 47</td>
</tr>
<tr>
<td>At3g63730</td>
<td>Leucine-rich repeat protein kinase family protein</td>
</tr>
<tr>
<td>At5g31850</td>
<td>unknown protein</td>
</tr>
<tr>
<td>At5g31870</td>
<td>AGL1, AGAMOUS-like 71</td>
</tr>
<tr>
<td>At3g61120</td>
<td>GES, IPS04, IPS4, terpene synthase 04</td>
</tr>
<tr>
<td>At2g14210</td>
<td>AGL44, ANR3, AGAMOUS-like 44</td>
</tr>
<tr>
<td>At2g39630</td>
<td>Vesicle transport v-SNARE family protein</td>
</tr>
<tr>
<td>At1g31690</td>
<td>Copper amine oxidase family protein</td>
</tr>
<tr>
<td>At5g46370</td>
<td>ATKCO2, ATTPK2, KO2, Ca2+ activated outward rectifying K+ channel 2</td>
</tr>
<tr>
<td>At4g15710</td>
<td>unknown protein</td>
</tr>
<tr>
<td>At4g26740</td>
<td>ATPKG1, AT51, CLD1, seed gene 1</td>
</tr>
<tr>
<td>At2g17420</td>
<td>LOX8, lipoxgenase 3</td>
</tr>
<tr>
<td>At2g34700</td>
<td>Pollen Oxe 3 allergen and extensis family protein</td>
</tr>
<tr>
<td>At5g13320</td>
<td>GDG1, GH3.12, PBS3, WIN3, Auxin-responsive GH3 family protein</td>
</tr>
<tr>
<td>At1g61090</td>
<td>Hydroxyproline-rich glycoprotein family protein</td>
</tr>
<tr>
<td>At5g38840</td>
<td>AT-HSF6A6, HSF6A6, heat shock transcription factor A6</td>
</tr>
<tr>
<td>At1g26070</td>
<td>unknown protein</td>
</tr>
<tr>
<td>At4g36700</td>
<td>RmlC-like cupins superfamily protein</td>
</tr>
<tr>
<td>At3g99100</td>
<td>Leucine-rich repeat protein kinase family protein</td>
</tr>
<tr>
<td>At1g17807</td>
<td>BETA-TIP, beta-tocopherol intrinsic protein</td>
</tr>
<tr>
<td>At3g17520</td>
<td>Late embryogenesis abundant protein (LEA) family protein</td>
</tr>
<tr>
<td>At2g15790</td>
<td>Cupredoxin superfamily protein</td>
</tr>
<tr>
<td>At1g59530</td>
<td>BZIP24, bZIP4, basic leucine-zipper 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Accession</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>At5g37890</td>
<td>BEST Arabidopsis thaliana protein match is: plastid movement impaired 2 (TAIR:AT1G6648B1); Has 1807 Blast hits to 1807 proteins in 277 species: Archaea: 0; Bacteria: 0; Metazoa: 736; Fungi: 347; Plants: 385; Viruses: 0; Other Eukaryotes: 339 (source: NCBI BLink)</td>
</tr>
<tr>
<td>At5g59931</td>
<td>ATRIKG21, JIKG21, jasmonate-regulated gene 21</td>
</tr>
<tr>
<td>At1g33930</td>
<td>P-loop containing nucleoside triphosphate hydrolases superfamily protein</td>
</tr>
<tr>
<td>At5g13560</td>
<td>UNE15, Late embryogenesis abundant protein (LEA) family protein</td>
</tr>
<tr>
<td>At5g49660</td>
<td>GDSL-like Lipase/Acylhydrolase superfamily protein</td>
</tr>
<tr>
<td>At3g04020</td>
<td>Phosphoglycerate mutase family protein</td>
</tr>
</tbody>
</table>

Table S2 (part 3/3) : List of genes regulated by CLF among the list presented in Table S2 part 2 (genes targeted by H3K27me3 among the 10 percent of genes the less expressed). Data of genes regulated by CLF in *Arabidopsis* roots are from Liu et al. (plant physiol. 2016).

<table>
<thead>
<tr>
<th>GO-ID</th>
<th>p-value</th>
<th>corr p-value</th>
<th>x</th>
<th>n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>52386</td>
<td>4.5488E-3</td>
<td>2.1081E-2</td>
<td>2</td>
<td>19</td>
<td>119 22304 cell wall thickening</td>
</tr>
<tr>
<td>9664</td>
<td>8.4874E-3</td>
<td>3.5078E-2</td>
<td>3</td>
<td>78</td>
<td>119 22304 plant-type cell wall organization</td>
</tr>
<tr>
<td>15843</td>
<td>5.3354E-3</td>
<td>2.1811E-2</td>
<td>1</td>
<td>1</td>
<td>119 22304 response to fungus</td>
</tr>
<tr>
<td>71669</td>
<td>5.3642E-3</td>
<td>2.1811E-2</td>
<td>4</td>
<td>131</td>
<td>119 22304 response to wounding</td>
</tr>
<tr>
<td>10263</td>
<td>1.0643E-2</td>
<td>3.5835E-2</td>
<td>1</td>
<td>2</td>
<td>119 22304 nicotianamine biosynthetic process</td>
</tr>
<tr>
<td>46271</td>
<td>1.7906E-3</td>
<td>9.6318E-3</td>
<td>2</td>
<td>12</td>
<td>119 22304 response to osmotic stress</td>
</tr>
<tr>
<td>6721</td>
<td>1.2799E-2</td>
<td>4.2110E-2</td>
<td>3</td>
<td>91</td>
<td>119 22304 terpenoid metabolic process</td>
</tr>
<tr>
<td>90357</td>
<td>1.5467E-2</td>
<td>7.2181E-2</td>
<td>1</td>
<td>1</td>
<td>119 22304 response to bacterium</td>
</tr>
<tr>
<td>43436</td>
<td>1.8075E-3</td>
<td>9.6318E-3</td>
<td>10</td>
<td>620</td>
<td>119 22304 response to wounding</td>
</tr>
<tr>
<td>47028</td>
<td>5.7342E-3</td>
<td>2.1811E-2</td>
<td>2</td>
<td>19</td>
<td>119 22304 response to wounding</td>
</tr>
<tr>
<td>1502</td>
<td>2.1309E-3</td>
<td>9.6318E-3</td>
<td>2</td>
<td>12</td>
<td>119 22304 response to osmotic stress</td>
</tr>
<tr>
<td>10120</td>
<td>7.7396E-4</td>
<td>5.1320E-3</td>
<td>2</td>
<td>8</td>
<td>119 22304 defense response by cell wall thickening</td>
</tr>
<tr>
<td>30397</td>
<td>9.9162E-4</td>
<td>5.9360E-3</td>
<td>2</td>
<td>9</td>
<td>119 22304 regulation of cell wall thickening</td>
</tr>
<tr>
<td>46700</td>
<td>9.7458E-3</td>
<td>3.4430E-2</td>
<td>2</td>
<td>28</td>
<td>119 22304 defense response by cell wall thickening</td>
</tr>
<tr>
<td>52545</td>
<td>5.0367E-3</td>
<td>2.1811E-2</td>
<td>2</td>
<td>20</td>
<td>119 22304 defense response by cell wall thickening</td>
</tr>
<tr>
<td>90354</td>
<td>1.0643E-2</td>
<td>3.5835E-2</td>
<td>1</td>
<td>2</td>
<td>119 22304 cellular amine catabolic process</td>
</tr>
<tr>
<td>9816</td>
<td>9.0811E-3</td>
<td>3.2347E-2</td>
<td>2</td>
<td>27</td>
<td>119 22304 cellular amine metabolic process</td>
</tr>
<tr>
<td>44106</td>
<td>8.2555E-3</td>
<td>2.9900E-2</td>
<td>6</td>
<td>327</td>
<td>119 22304 cellular amine metabolic process</td>
</tr>
<tr>
<td>46218</td>
<td>2.8228E-5</td>
<td>2.8294E-4</td>
<td>2</td>
<td>19</td>
<td>119 22304 defense response by cell wall thickening</td>
</tr>
<tr>
<td>46436</td>
<td>2.9465E-5</td>
<td>2.9465E-4</td>
<td>2</td>
<td>19</td>
<td>119 22304 defense response by cell wall thickening</td>
</tr>
<tr>
<td>6810</td>
<td>1.2938E-4</td>
<td>1.1617E-3</td>
<td>20</td>
<td>1502</td>
<td>119 22304 defense response by cell wall thickening</td>
</tr>
<tr>
<td>6649</td>
<td>6.4053E-8</td>
<td>2.1236E-6</td>
<td>12</td>
<td>296</td>
<td>119 22304 defense response by cell wall thickening</td>
</tr>
<tr>
<td>6952</td>
<td>7.9351E-9</td>
<td>4.2735E-7</td>
<td>18</td>
<td>637</td>
<td>119 22304 defense response by cell wall thickening</td>
</tr>
</tbody>
</table>

Table S3 part (1/2) : Gene ontology analysis of highly expressed genes marked by H3K27me3 in Arabidopsis roots.

<table>
<thead>
<tr>
<th>GO-ID</th>
<th>p-value</th>
<th>corr p-value</th>
<th>x</th>
<th>n</th>
<th>X</th>
<th>N</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>48608</td>
<td>1.0806E-6</td>
<td>6.4260E-4</td>
<td>46</td>
<td>735</td>
<td>650</td>
<td>22304</td>
<td>reproductive structure development</td>
</tr>
<tr>
<td>45449</td>
<td>2.8497E-6</td>
<td>6.4260E-4</td>
<td>74</td>
<td>1468</td>
<td>650</td>
<td>22304</td>
<td>regulation of transcription</td>
</tr>
<tr>
<td>31326</td>
<td>4.4750E-6</td>
<td>6.4260E-4</td>
<td>76</td>
<td>1540</td>
<td>650</td>
<td>22304</td>
<td>regulation of cellular biosynthetic process</td>
</tr>
<tr>
<td>9889</td>
<td>4.4750E-6</td>
<td>6.4260E-4</td>
<td>76</td>
<td>1540</td>
<td>650</td>
<td>22304</td>
<td>regulation of biosynthetic process</td>
</tr>
<tr>
<td>3006</td>
<td>5.3891E-6</td>
<td>6.4260E-4</td>
<td>48</td>
<td>829</td>
<td>650</td>
<td>22304</td>
<td>reproductive developmental process</td>
</tr>
<tr>
<td>3963</td>
<td>6.0345E-6</td>
<td>6.4260E-4</td>
<td>52</td>
<td>931</td>
<td>650</td>
<td>22304</td>
<td>reproduction</td>
</tr>
<tr>
<td>9791</td>
<td>6.5174E-6</td>
<td>6.4260E-4</td>
<td>50</td>
<td>884</td>
<td>650</td>
<td>22304</td>
<td>post-embryonic development</td>
</tr>
<tr>
<td>10556</td>
<td>6.7189E-6</td>
<td>6.4260E-4</td>
<td>74</td>
<td>1504</td>
<td>650</td>
<td>22304</td>
<td>regulation of macromolecule biosynthetic process</td>
</tr>
<tr>
<td>50794</td>
<td>6.9346E-6</td>
<td>6.4260E-4</td>
<td>108</td>
<td>2448</td>
<td>650</td>
<td>22304</td>
<td>regulation of cellular process</td>
</tr>
<tr>
<td>19219</td>
<td>9.4637E-6</td>
<td>6.4260E-4</td>
<td>74</td>
<td>1527</td>
<td>650</td>
<td>22304</td>
<td>regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolic process</td>
</tr>
<tr>
<td>6725</td>
<td>3.7828E-3</td>
<td>6.4260E-4</td>
<td>71</td>
<td>1642</td>
<td>650</td>
<td>22304</td>
<td>regulation of gene expression</td>
</tr>
<tr>
<td>10468</td>
<td>4.7781E-3</td>
<td>6.4260E-4</td>
<td>77</td>
<td>1664</td>
<td>650</td>
<td>22304</td>
<td>regulation of cellular metabolic process</td>
</tr>
<tr>
<td>32501</td>
<td>4.8742E-3</td>
<td>6.4260E-4</td>
<td>77</td>
<td>1732</td>
<td>650</td>
<td>22304</td>
<td>regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolic process</td>
</tr>
<tr>
<td>9908</td>
<td>4.8742E-3</td>
<td>6.4260E-4</td>
<td>18</td>
<td>228</td>
<td>650</td>
<td>22304</td>
<td>flower development</td>
</tr>
<tr>
<td>50789</td>
<td>7.6177E-3</td>
<td>6.4260E-4</td>
<td>112</td>
<td>2783</td>
<td>650</td>
<td>22304</td>
<td>regulation of biological process</td>
</tr>
<tr>
<td>48316</td>
<td>7.6177E-3</td>
<td>6.4260E-4</td>
<td>27</td>
<td>438</td>
<td>650</td>
<td>22304</td>
<td>seed development</td>
</tr>
<tr>
<td>48438</td>
<td>7.6177E-3</td>
<td>6.4260E-4</td>
<td>12</td>
<td>122</td>
<td>650</td>
<td>22304</td>
<td>floral whorl development</td>
</tr>
<tr>
<td>60255</td>
<td>8.1089E-3</td>
<td>6.4260E-4</td>
<td>74</td>
<td>1685</td>
<td>650</td>
<td>22304</td>
<td>regulation of macromolecule metabolic process</td>
</tr>
<tr>
<td>48569</td>
<td>8.3638E-3</td>
<td>6.4260E-4</td>
<td>16</td>
<td>202</td>
<td>650</td>
<td>22304</td>
<td>post-embryonic organ development</td>
</tr>
<tr>
<td>6721</td>
<td>9.1267E-3</td>
<td>6.4260E-4</td>
<td>10</td>
<td>91</td>
<td>650</td>
<td>22304</td>
<td>terpenoid metabolic process</td>
</tr>
<tr>
<td>42545</td>
<td>1.0306E-2</td>
<td>6.4260E-4</td>
<td>12</td>
<td>128</td>
<td>650</td>
<td>22304</td>
<td>cell wall modification</td>
</tr>
<tr>
<td>19222</td>
<td>1.7336E-3</td>
<td>6.4260E-4</td>
<td>77</td>
<td>1825</td>
<td>650</td>
<td>22304</td>
<td>regulation of metabolic process</td>
</tr>
<tr>
<td>22611</td>
<td>1.8904E-2</td>
<td>6.4260E-4</td>
<td>4</td>
<td>15</td>
<td>650</td>
<td>22304</td>
<td>dormancy process</td>
</tr>
<tr>
<td>10162</td>
<td>1.8904E-2</td>
<td>6.4260E-4</td>
<td>4</td>
<td>15</td>
<td>650</td>
<td>22304</td>
<td>seed dormancy</td>
</tr>
<tr>
<td>65007</td>
<td>1.8904E-2</td>
<td>6.4260E-4</td>
<td>124</td>
<td>3243</td>
<td>650</td>
<td>22304</td>
<td>biological regulation</td>
</tr>
<tr>
<td>48437</td>
<td>2.3861E-2</td>
<td>6.4260E-4</td>
<td>12</td>
<td>143</td>
<td>650</td>
<td>22304</td>
<td>floral organ development</td>
</tr>
<tr>
<td>6720</td>
<td>2.6945E-2</td>
<td>6.4260E-4</td>
<td>11</td>
<td>126</td>
<td>650</td>
<td>22304</td>
<td>isoprenoid metabolic process</td>
</tr>
<tr>
<td>10431</td>
<td>4.4043E-2</td>
<td>6.4260E-4</td>
<td>4</td>
<td>19</td>
<td>650</td>
<td>22304</td>
<td>seed maturation</td>
</tr>
<tr>
<td>19433</td>
<td>4.9392E-2</td>
<td>6.4260E-4</td>
<td>2</td>
<td>3</td>
<td>650</td>
<td>22304</td>
<td>triglyceride catalytic process</td>
</tr>
<tr>
<td>44269</td>
<td>4.9392E-2</td>
<td>6.4260E-4</td>
<td>2</td>
<td>3</td>
<td>650</td>
<td>22304</td>
<td>glycerol ether catalytic process</td>
</tr>
<tr>
<td>46461</td>
<td>4.9392E-2</td>
<td>6.4260E-4</td>
<td>2</td>
<td>3</td>
<td>650</td>
<td>22304</td>
<td>neutral lipid catalytic process</td>
</tr>
<tr>
<td>46464</td>
<td>4.9392E-2</td>
<td>6.4260E-4</td>
<td>2</td>
<td>3</td>
<td>650</td>
<td>22304</td>
<td>acylglycerol catalytic process</td>
</tr>
<tr>
<td>46503</td>
<td>4.9392E-2</td>
<td>6.4260E-4</td>
<td>2</td>
<td>3</td>
<td>650</td>
<td>22304</td>
<td>glycerolipid catalytic process</td>
</tr>
<tr>
<td>160</td>
<td>4.9392E-2</td>
<td>6.4260E-4</td>
<td>7</td>
<td>64</td>
<td>650</td>
<td>22304</td>
<td>two-component signal transduction system (phosphorelay)</td>
</tr>
</tbody>
</table>

Table S3 part (2/2) : Gene ontology analysis of weakly expressed genes marked by H3K27me3 in Arabidopsis roots.

Figures Legends

Figure 1: CLF controls H3K27me3 enrichment at the NRT2.1 locus under both repressive and active conditions for expression. ChIP analysis of H3K27me3 in WT, clf-29, and swn-3 roots of 7 days-old plants grown under (A) high nitrogen (10 mM NH₄NO₃) or (B) low nitrate (0.3 mM NO₃⁻) conditions. LEC2 and ACT2 served as positive or negative control for H3K27me3, respectively. Positions of primers used in qRT-PCR are available in Figure S1. (C) ChIP analysis of H3K27me3 in WT and clf-29 covering the NRT2.1 locus. Quantification by qRT-PCR is shown as the percentage of H3. Error bars represent standard errors of the mean based on 3 biological replicates. Statistical significance was computed using a two-tailed Student’s t-test. Significance cutoff: *p < 0.05, **p < 0.01, ***p < 0.001.

Figure 2: Reduction of H3K27me3 in clf-29 increases the expression of NRT2.1 in a context of very active expression. (A) Relative expression of NRT2.1 by qRT-PCR in roots of 7-days old of WT, clf-29, and swn-3 plants grown under high nitrogen (10 mM NH₄NO₃) or low nitrate (0.3 mM NO₃⁻) conditions. Quantification by qRT-PCR is shown as the percentage of ACT2 transcript levels. (B) Relative GUS expression by qRT-PCR in roots of 7-days old ProNRT2.1:GUS WT and clf-29 plants grown under low nitrate (0.3 mM NO₃⁻) condition. Quantification by qRT-PCR is shown as the percentage of ACT2 transcript levels. (C) ChIP analysis of H3K27me3 at the ProNRT2.1:GUS locus in WT and clf-29 roots of 7 days-old plants grown under low nitrate (0.3 mM NO₃⁻) condition. LEC2 and ACT2 served as positive or negative control for H3K27me3, respectively. Quantification by qRT-PCR is shown as the percentage of H3. Error bars represent standard errors of the mean based on 3 biological replicates. Statistical significance was computed using a two-tailed Student’s t-test. Significance cutoff: *p < 0.05, **p < 0.01, ***p < 0.001.
Figure 3: Reduction of H3K27me3 in clf-29 in the context of active transcription does not lead to an increase in H3K4me3, H3K36me3 or H3K9ac at the NRT2.1 locus. ChIP analysis of (A) H3K4me3, (B) H3K36me3, (C) H3K9ac in WT and clf-29 roots of 7 days-old plants grown under low nitrate (0.3 mM NO$_3^−$) condition. Quantification by qRT-PCR is shown as the percentage of H3. ACT7 served as positive for H3K4me3 and H3K9ac, ACT2 served as positive for H3K36me3, LEC2 served as negative control for H3K4me3, H3K36me3 and H3K9ac. Error bars represent standard errors of the mean based on at least 3 biological replicates. Statistical significance was computed using a two-tailed Student’s t-test. Significance cutoff: *p < 0.05, **p < 0.01, ***p < 0.001.

Figure 4: CLF and H3K27me3 control NRT2.1 expression in NRT2.1-expressing root tissues. Histochemical localization of GUS expression on root transversal sections of 7 days-old Arabidopsis WT (A) and clf-29 (B) lines containing ProNRT21:GUS, and grown under low nitrate (0.3 mM NO$_3^−$) condition. Bar = 25 µm. Enrichment of H3K4me3 (C) and H3K27me3 (D) at the NRT2.1 locus in the cortex. Quantification by qRT-PCR is shown as the percentage of input. Error bars represent standard errors of the mean based on 3 biological replicates.

Figure 5: Reduction in H3K27me3 enrichment can lead to silencing by DNA methylation. (A) Relative expression of GFP in ProNRT2.1:GFP by qRT-PCR in roots of 7-days old WT or clf-29 plants grown under low nitrate (0.3 mM NO$_3^−$) condition. Quantification by qRT-PCR is shown as the percentage of ACT2 transcript levels. (B) McrBCqPCR–based methylation analysis at the ProNRT2.1:GFP locus in roots of 7-days old WT or clf-29 plants grown under low nitrate (0.3 mM NO$_3^−$) condition. Quantification by qRT-PCR is shown as the percentage of methylated DNA. ACT2 and AT4TE09085 serve as negative and positive methylated
controls, respectively. Error bars represent standard errors of the mean based on 3 biological replicates.

Figure 6: Comparison of genes with very low or high expression showing H3K27me3 enrichment and regulation by CLF. Venn diagram representing a comparison of the proportion of genes marked by H3K27me3 and regulated by CLF among the very low expressed or very highly expressed genes. Very low expressed genes correspond to the 10 percent of genes the most poorly expressed in the transcriptome; very highly expressed genes correspond to the 10 percent of genes the most highly expressed in the transcriptome. Data of H3K27me3-marked genes in Arabidopsis roots are from (Roudier et al., 2011), expression data are from (Widiez et al., 2011), CLF-regulated genes are from (Liu et al., 2016).

Supporting Information Legends

Figure S1: Position of primers used for ChIP experiments, Related to Figure 1. Schematic representation of target and control genes used in this study, and position of primers used for ChIP experiments.

Figure S2: CLF is associated to the NRT2.1 locus under limiting NO₃⁻ condition, Related to Figure 2. ChIP experiments were performed with chromatin from roots of 7-days old clf-29 plants carrying a ProCLF:CFP:CLF transgene, grown under low nitrate (0.3 mM NO₃⁻) condition. Signals were detected by qRT-PCR and normalized against the input for NRT2.1, LEC2 (positive control) and ACT2 (negative control).
Figure S3: Expression of NRT2.1 transcriptional regulators is not affected in clf-29, Related to Figure 2. Relative expression of the main transcriptional regulators of NRT2.1. qRT-PCR in roots of 7-days old WT or clf-29 plants grown under low nitrate (0.3 mM NO$_3^-$) condition. Error bars represent standard errors of the mean based on 3 biological replicates.

Figure S4: ProPEP:NTF expression is cortex-specific under low nitrate condition, Related to Figure 4. Left: detection of cortex-specific GFP fluorescence by confocal microscopy under low nitrate (0.3 mM NO$_3^-$) condition, middle: bright field picture of the root, right: composite of left and middle pictures.

Figure S5: Expression levels of ProNRT2.1 reporter lines under limiting nitrate (0.3 mM NO$_3^-$) condition, Related to Figure 5. (A) Promoter lengths in NRT2.1 transcriptional fusions ProNRT2.1:GUS, ProNRT2.1:LUC and ProNRT2.1:GFP. (B) Relative expression of GUS, LUC and GFP in ProNRT2.1:GUS, ProNRT2.1:LUC and ProNRT2.1:GFP. qRT-PCR in roots of 7-days old WT plants grown under low nitrate (0.3 mM NO$_3^-$) condition. Error bars represent standard errors of the mean based on 3 biological replicates.

Figure S6: Reduction of H3K27me3 in clf-29 leads to over-expression of ProNRT2.1:LUC in the context of active transcription, Related to Figure 5. Relative expression of ProNRT2.1:LUC by qRT-PCR in roots of 7-days old WT and clf-29 plants grown under low nitrate (0.3 mM NO$_3^-$) condition. Quantification by qRT-PCR is shown as the percentage of ACT2 transcript levels. Error bars represent standard errors of the mean based on 3 biological replicates.
2.2. Résultats supplémentaires

Plusieurs résultats complémentaires qui n’ont pas été intégrés à l’article exposé supra sont présentés ici.

2.2.1. Analyses tissu-spécifiques de la chromatine au locus NRT2.1 sur LN

Tout d’abord, nous allons revenir sur les analyses tissu-spécifiques, partiellement présentées dans l’article. Nous disposons de trois lignées INTACT (Marquès-Bueno et al. 2016), nous permettant d’isoler les noyaux des poils absorbants (pEXP7::NTF), du cortex (pPEP::NTF) et des cellules compagnes du phloème (pSUC2::NTF). Nous avons choisi ces lignées afin de comparer l’état chromatinien au locus NRT2.1 dans deux tissus où il est fortement exprimé (épiderme et cortex) avec l’état chromatinien d’un tissu où il n’est pas exprimé (cellules compagnes du phloème) et ainsi analyser si (i) le cortex et l’épiderme, tissus où NRT2.1 est très fortement exprimé, sont enrichis en H3K27me3 et (ii) comparer cet enrichissement avec un tissu où NRT2.1 n’est pas exprimé. De même, cette expérience a pour visée de valider plusieurs évidences, présentées dans l’article, suggérant que CLF ne participe pas, dans ce modèle, à diriger le profil d’expression tissulaire de NRT2.1. Cette expérience a été réalisée en collaboration avec le laboratoire de François Roudier à l’ENS de Paris et de Lyon, et en partie dans le cadre d’une visite dans son équipe. Dans le but de purifier 500 000 noyaux spécifiques d’un tissu, nous avons utilisé 2g de racines pour chaque échantillon. Afin de produire suffisamment de matériel, nous avons réalisé des cultures en hydroponie. Après avoir vérifié le comportement de ces lignées dans ces conditions de culture, nous avons observé que le promoteur EXP7 présente une plus faible activité en hydroponie, qui devient insuffisante pour la purification des noyaux (faible signal GFP dans l’enveloppe nucléaire). Nous n’avons donc pas utilisé cette lignée dans nos analyses. Dans notre article, nous avons présenté uniquement les résultats obtenus pour la lignée spécifique du cortex, or l’analyse de la lignée spécifique des cellules compagnes du phloème permet de comparer l’enrichissement en H3K27me3 et H3K4me3 avec un tissu où NRT2.1 ne présente pas d’activité transcriptionnelle. Autrement dit, le niveau en H3K27me3 et/ou H3K4me3 est-il différent entre deux tissus où NRT2.1 présente une activité transcriptionnelle fortement contrastée ? L’enrichissement en H3K4me3 devrait suivre les profils d’expression : enrichi dans le cortex et appauvri dans les cellules compagnes du phloème, mais pour H3K27me3 différents profils peuvent être envisagés : (i) si la modulation d’une activité promotrice, exercée par CLF, cible spécifiquement une forte activité transcriptionnelle, l’enrichissement devrait être plus
Figure 3.1 : Analyses chromatiniennes tissu spécifiques au locus NRT2.1 dans les lignées INTACT (sauvages) et étude du profil d’expression de ces lignées dans un fond clf-29.

(A-B) Analyses chromatiniennes au locus NRT2.1 dans le tissu du cortex ou les cellules compagnes du phloème après 6 semaines de culture sur 0.3 mM KNO₃. Enrichissement en H3K27me3 (A) et H3K4me3 (B) en 5’ du gène NRT2.1 (+300 pb) et au niveau du promoteur (-100 pb).

(C) Analyse des lignées INTACT dans un fond mutant clf-29 après 7 jours de croissance sur 0.3 mM KNO₃. (cortex : pPEP::NTF, cellules compagnes du phloème : pSUC2::NTF, poils absorbant : pEXP7::NTF). Les flèches blanches pointent la localisation des noyaux présentant une expression ectopique de la lignée pSUC2::NTF dans un fond clf-29. L’échelle représente 100 µm.
important dans le cortex ; (ii) si CLF cible \textit{NRT2.1} quel que soit le tissu, l’enrichissement devrait être similaire dans les différents tissus et enfin (iii) si CLF participe au maintien d’une répression stable de \textit{NRT2.1} (et non à l’établissement de la répression) dans les tissus où \textit{NRT2.1} n’est pas exprimé, l’enrichissement pourrait être plus important dans les cellules compagnes du phloème.

Pour l’analyse chromatinienne de ces lignées, Léo Herbert (stagiaire M2, que j’ai encadré) a contribué à la production des résultats. Comme présenté dans l’article, les résultats révèlent un fort enrichissement en H3K27me3 dans le cortex, majoritairement en 5’ du gène, alors que \textit{NRT2.1} est fortement exprimé dans ce tissu (Figure 3.1A). Cet enrichissement est similaire dans les cellules compagnes du phloème, suggérant que PRC2 cible le locus \textit{NRT2.1} indépendamment du type de tissu et donc du patron d’expression de \textit{NRT2.1}. De façon attendue, l’enrichissement en H3K4me3 au locus \textit{NRT2.1} est nettement plus important dans le cortex que dans les cellules compagnes du phloème (Figure 3.1B). En effet, nous observons un fort enrichissement en 5’ du gène \textit{NRT2.1} dans le cortex (similaire à l’\textit{ACT7}) alors que les cellules compagnes du phloème ne sont pas marquées (même niveau que le contrôle négatif, \textit{LEC2}). Étonnamment, le promoteur \textit{NRT2.1} (environ -200pb) n’est pas enriçi en H3K4me3. Ainsi, la différence entre ces lignées réside dans le niveau de la marque activatrice H3K4me3. Ces résultats suggèrent que PRC2 cible \textit{NRT2.1} indépendamment de ses profils d’expression et que c’est la dynamique en marques activatrices, notamment H3K4me3, qui dirige ses profils d’expression. Cela valide également nos observations qui indiquent que les H3K27me3 ne participent pas à la régulation spatiale de \textit{NRT2.1}. Afin d’approfondir cette analyse, nous avons introduit la mutation \textit{clf-29} dans ces lignées (incluant la lignée EXP7). Au vu du rôle de PRC2 dans la définition de l’identité cellulaire (Lafos et al. 2011) et notamment la différenciation des tissus vasculaires (de Lucas et al. 2016), nous avons tout d’abord analysé l’impact de l’introduction de la mutation \textit{clf-29} sur les profils d’expression des rapporteurs (Figure 3.1C). De façon attendue, le patron d’expression de \textit{SUC2} (promoteur utilisé dans la lignée cellules compagnes du phloème) est perturbé dans un fond \textit{clf-29}. De nombreux tissus présentent des noyaux marqués par la GFP y compris les assises du cortex et certains poils absorbants, rendant cette lignée inexploitable. Concernant \textit{PEP} et \textit{EXP7}, les patrons d’expression ne sont pas modifiés, suggérant que l’identité cellulaire du cortex et de l’épiderme ne sont pas impactés par la mutation \textit{clf-29}. Le comportement de ces lignées dans un fond \textit{clf-29} devra être vérifié en hydroponie avant d’être analysé. Bien que la comparaison avec la lignée cellules compagnes du phloème ne soit pas possible, l’analyse comparative
Figure 3.2 : Comparaison des niveaux de transcrits GUS, LUC et NRT2.1 dans les lignées promoteur-rapporteur et Col-0, dans un fond sauvage et mutant clf-29 après 7 jours de croissance sur 0.3 mM KNO₃.

(A) Niveau de transcrits GUS dans une lignée sauvage et mutante clf-29 exprimant la construction pNRT2.1(456)::GUS.
(B) Niveau de transcrits LUC dans une lignée sauvage et mutante clf-29 exprimant la construction pNRT2.1(1201)::LUC.
(C) Niveau de transcrits NRT2.1 chez le sauvage (Col-0) et le mutant clf-29.

Les tests statistiques comparent les données du mutant à celles de la lignée sauvage correspondante (WT ou col) sur au moins trois répétitions biologiques.
*p < 0.05, **p < 0.01, ***p < 0.001. Le chiffre indiqué chez le mutant clf-29 correspond au ratio entre la moyenne du mutant et celle de la lignée sauvage (facteur d’induction).
entre les lignées sauvages et les lignées *clf-29* permettra d’analyser finement l’impact de la mutation *clf-29* sur l’activité du promoteur dans les tissus où *NRT2.1* est fortement exprimé.

2.2.2. Recherche d’un mécanisme additionnel modulant le niveau de transcrits *NRT2.1* en LN

Sur une condition permissive pour l’expression de *NRT2.1* (LN), nous avons observé, dans un fond *clf-29*, une plus forte activité du promoteur *NRT2.1* sur les lignées promoteur rapporteur (*pNRT2.1*:GUS/LUC) comme sur le locus *NRT2.1*. Cependant, cette induction est bien plus importante pour les rapporteurs transcriptionnels que pour le gène *NRT2.1* (Figure 3.2). En effet, dans les lignées *pNRT2.1(456pb)::GUS*:pNRT2.1(1201pb)::LUC, nous observons dans un fond *clf-29*, un facteur de réactivation des gènes rapporteurs de 4 et 2.2 respectivement alors que le gène endogène *NRT2.1* présente, dans un fond *clf-29*, une réactivation d’un facteur 1.5. Ainsi, plus on augmente la taille du promoteur *NRT2.1*, plus le niveau de transcrits du rapporteur augmente dans les lignées sauvages et plus l’impact de la mutation *clf-29* s’atténue. Néanmoins, dans la lignée *pNRT2.1(1201pb)::LUC*, les niveaux de transcrits *LUC* sont similaires à ceux du gène *NRT2.1* endogène dans les lignées sauvages, pourtant l’impact de la mutation *clf-29* semble plus modeste sur l’endogène. L’ensemble de ces observations suggère que la régulation dépendante de PRC2 que nous observons agit principalement au niveau de l’activité du promoteur, et qu’un mécanisme additionnel pourrait assurer l’homéostasie des transcrits *NRT2.1*, y compris dans un fond *clf-29*. Ce mécanisme additionnel pourrait s’expliquer par au moins deux hypothèses. Premièrement, une régulation post-transcriptionnelle spécifiquement ciblée sur les transcrits *NRT2.1* serait mise en place dans un fond mutant *clf-29* afin de préserver un contrôle du niveau de transcrits *NRT2.1*. Deuxièmement, une régulation transcriptionnelle supplémentaire à celle exercée par CLF régulerait l’expression de *NRT2.1* à son locus indépendamment et/ou de façon redondante avec CLF.

Analyse d’un mécanisme additionnel dirigé par une régulation post-transcriptionnelle de *NRT2.1*

Dans un premier temps, nous avons cherché à savoir si une régulation post-transcriptionnelle, telle que la surveillance des ARNm, permettrait de moduler les niveaux de transcrits *NRT2.1* dans un fond mutant pour CLF sur LN. Pour répondre à cette question, nous avons (i) introduit la mutation *clf-29* par croisement dans différents fonds mutants affectés pour des exoribonucléases (XRN) nucléaires (*xrn2-1* et *xrn3-3*) ou cytoplasmiques (*xrn4-5*),
Figure 3.3 : Analyse de la mise en place d’une régulation post-transcriptionnelle de \(NRT2.1 \) dans un fond \(clf-29 \) après 7 jours de croissance sur 0.3 mM \(KNO_3 \).

(A) Niveau de transcrits \(NRT2.1 \) dans les lignées Col-0, \(clf-29 \), \(clf-29 xrn2-1 \), \(clf-29 xrn3-3 \) et \(clf-29 xrn4-5 \).

(B) Analyse de la stabilité des transcrits \(NRT2.1 \) chez une lignée sauvage (WT) et le mutant \(clf-29 \).

Les tests statistiques comparent les données du mutant à celles du sauvage sur au moins trois répétitions biologiques. *\(p < 0.05 \), **\(p < 0.01 \), ***\(p < 0.001 \)
dans le but d’analyser les niveaux de transcrits NRT2.1, et (ii) analysé si la stabilité des transcrits NRT2.1 est impactée dans un fond clf-29 par rapport au sauvage.

Dans le cas où une surveillance des ARNm par les exoribonucléases serait mise en place uniquement dans fond clf-29 afin de maintenir le niveau de transcrits NRT2.1, nous devrions observer un niveau de transcrits NRT2.1 plus important dans les doubles mutants clf-29 xrn par rapport au simple mutant clf-29. L’analyse des transcrits NRT2.1 sur LN révèle un niveau de transcrits plus important chez clf-29 par rapport à la lignée sauvage et il en est de même chez les doubles mutants clf-29 xrn (Figure 3.3A). Néanmoins cette élévation du niveau de transcrits NRT2.1 chez les doubles mutants clf-29 xrn est similaire à celle du mutant clf-29, suggérant que le phénotype observé est dû à la mutation clf-29 (pas d'effet synergie). Ce résultat indique que la surveillance des ARNm via les XRN n'est pas impliquée au locus NRT2.1 dans un fond clf-29.

Nous avons par la suite comparé la stabilité des transcrits NRT2.1 dans un fond sauvage et mutant clf-29 sur LN. Pour ce faire, nous avons traité les plantes avec un inhibiteur de la transcription, l'actinomycine-D, et suivi le niveau de transcrits NRT2.1 à différents pas de temps. La vitesse de décroissance des transcrits (pente de la régression linéaire obtenue) permet de calculer un temps de demi-vie, représentatif de la stabilité de ces transcrits, dans chacun des fonds génétiques. Les résultats sont très variables, néanmoins aucune différence significative n'est observée entre la lignée sauvage et le mutant clf-29 (Figure 3.3B). Le temps de demi-vie des transcrits NRT2.1 ainsi obtenu varie entre 2h09 et 2h24.

En conclusion, nous démontrons que, dans les conditions que nous avons analysées, les transcrits NRT2.1 ne sont pas soumis à une surveillance via les XRN dans un fond mutant clf-29, et que la stabilité des transcrits n'est pas impactée dans ce mutant. De ce fait, nous pouvons rejeter l'hypothèse selon laquelle une régulation post-transcriptionnelle serait mise en place dans un fond mutant clf-29 afin de maintenir le niveau de transcrits NRT2.1.

Analyse d'un mécanisme additionnel dirigé par une régulation transcriptionnelle de NRT2.1

Nous avons cherché à caractériser si la différence d’induction, observée entre le gène NRT2.1 et les rapporteurs transcriptionnels dans un fond clf-29, est due à un autre mécanisme de régulation transcriptionnelle.

Nous avons dans un premier temps caractérisé et comparé l'activité transcriptionnelle réelle aux locus NRT2.1 et LUC dans une lignée sauvage et mutante clf-29 par run-on. Cette
Figure 3.4 : Analyse de l’activité transcriptionnelle aux loci NRT2.1 et pNRT2.1::LUC, dans une lignée sauvage (WT) et mutante clf-29 après 7 jours de croissance sur 0.3 mM KNO₃.

Les niveaux de transcrits NRT2.1 et LUC (relatif à l’ACT2) sont obtenus par RT-qPCR suite à une expérience de run-on (transcrits in vitro) dans la lignée sauvage et mutante clf-29. La partie gauche correspond au pool total d’ARN nucléaires.

Les tests statistiques comparent les données du mutant à celles du sauvage sur trois répétitions biologiques. *p < 0.05, **p < 0.01, ***p < 0.001
expériment consiste à réaliser une élongation *in vitro* de transcrits initiés *in vivo*. Pour ce faire, des noyaux ont été isolés et incubés avec des UTP biotinylés dans le but de produire des néotranscrits biotinylés qui seront purifiés à l’aide de billes magnétiques couplées à la streptavidine. Cette technique permet d’obtenir l’activité transcriptionnelle au moment de la préparation des noyaux. Nous avons également analysé un aliquot de noyaux avant la purification des néotranscrits marqués afin de quantifier les transcrits nucléaires. Les résultats révèlent une augmentation significative du niveau de transcrits *NRT2.1* synthétisés *in vitro* (néotranscrits) chez le mutant *clf-29* par rapport à la lignée sauvage (Figure 3.4). Cependant cette augmentation est largement plus importante pour les transcrits *LUC*. Ce résultat confirme que la mutation *clf-29* impacte de façon plus modérée l’activité transcriptionnelle au locus *NRT2.1* que celle du locus *LUC*. Cela suggère donc fortement qu’un mécanisme additionnel à celui de PRC2 module l’expression de *NRT2.1* au niveau transcriptionnel.

Par la suite, nous avons cherché à analyser l’importance du corps du gène *NRT2.1* sur son induction dans un fond *clf-29*. Dans ce but, nous avons introduit la mutation *clf-29* (fond Col-0) dans une lignée *pNRT2.1::NRT2.1::GFP; nrt2.1 -1* (fond WS, réalisée à partir de l’ADNg contenant les introns). La taille du promoteur de cette lignée est comparable à celle de la lignée *pNRT2.1::LUC* (respectivement 1335 pb et 1201 pb). Si le corps du gène contient un élément modulateur, son introduction dans un fond *clf-29* devrait atténuer le phénotype d’induction de *NRT2.1*et de *GFP* en comparaison à celui de *LUC*. Les rétrocroisements permettant d’éliminer le fond génétique Col-0 sont en cours mais nous avons pu réaliser une expérience préliminaire de la descendance en présence ou absence de la mutation *clf-29* (Figure 3.5). Les résultats révèlent un niveau de transcrits *NRT2.1* et *GFP* significativement plus fort chez le mutant *clf-29* par rapport à la lignée sauvage (facteur 2.5). Cependant, le facteur de réactivation dans un fond *clf-29* est donc similaire à celui de la construction *pNRT2.1::LUC* (facteur 2.2, Figure 3.2), suggérant que le mécanisme répresseur recherché n’est pas ciblé sur la simple présence du corps du gène *NRT2.1*.

Ainsi, lors de nos recherches d’un élément répresseur pouvant expliquer la différence observée entre le gène *NRT2.1* endogène et les gènes rapporteurs, nous avons montré que dans un fond *clf-29*, les transcrits *NRT2.1* ne sont ni dégradés ni moins stables (résultats confirmés par run-on). De même la présence du gène *NRT2.1* contenant les introns ne semble pas atténuer la réactivation observée chez *clf-29*. En conséquence, il est probable que l’environnement génomique du locus *NRT2.1* exerce une fonction répressive, ou qu’un autre acteur répresseur, différent de CLF, intervienne spécifiquement au locus *NRT2.1*. Si on
Figure 3.5 : Impact de la mutation clf-29 sur l’activité du promoteur NRT2.1 en présence du gène NRT2.1, dans une lignée sauvage (WT) et mutante clf-29 exprimant la construction pNRT2.1::NRT2.1::GFP dans un fond mutant nrt2.1-1, après 7 jours de croissance sur 0.3 mM KNO₃.

(A) Niveau de transcrits NRT2.1 chez la lignée sauvage et le mutants clf-29.
(B) Niveau de transcrits GFP chez la lignée sauvage et le mutants clf-29.

Les tests statistiques comparent les données du mutant à celles de la lignée sauvage sur trois réplicats biologiques. *p < 0.05, **p < 0.01, ***p < 0.001
considère que cet autre acteur résulte d’un mécanisme chromatinien, outre PRC2, peu d’acteurs chromatiniens sont impliqués dans la répression des gènes. Le dépôt de la marque répressive H4R3sme2 a été caractérisé comme réprimant les facteurs de transcription impliqués dans l’homéostasie du fer (Fan et al. 2014), néanmoins peu de données sont disponibles sur l’impact de cette marque et son éventuel lien avec PRC2. Un autre de ces acteurs, étroitement lié avec PRC2, est le complexe PRC1. Il peut agir indépendamment de PRC2 mais peut également renforcer la répression établie par PRC2 (Bratzel et al. 2010 ; Veluchamy et al. 2016). Cependant, de plus en plus d’études présentent PRC1 comme un acteur de la mise en place de la répression et qui recruterait par la suite PRC2 (Yang et al. 2013 ; Blackledge et al. 2014 ; Cooper et al. 2014 ; Kalb et al. 2014). De ce fait PRC1 constitue un bon candidat pour le mécanisme additionnel que nous cherchons. Nous avons donc cherché à analyser si certains membres du complexe PRC1 pouvaient assurer la modulation de l’activité du promoteur NRT2.1 en absence de CLF ou de façon redondante avec CLF. Nous avons choisi d’analyser l’impact de la mutation du gène LHP1 car à l’échelle du génome, il co-localise avec l’enrichissement en H3K27me3 (Zhang et al. 2007 ; Turck et al. 2007). De plus, LHP1 est retrouvé au locus NRT2.1 (sur une condition répressive pour sa transcription) dans deux expériences réalisées par des laboratoires différents (Zhang et al. 2007 ; Veluchamy et al. 2016). Nous avons donc introduit par croisement la mutation lhp1-4 dans la lignée pNRT2.1(1201)::LUC afin de comparer l’impact de sa mutation sur les niveaux de transcrits NRT2.1 et LUC sur LN. Les résultats révèlent une augmentation significative des niveaux de transcrits NRT2.1 et LUC dans un fond lhp1-4 par rapport à la lignée sauvage suggérant que LHP1 participe à la répression de NRT2.1 sur LN (Figure 3.6). Néanmoins, l’impact de la mutation lhp1-4 semble plus modeste que celle de la mutation clf-29 sur la réactivation du gène rapporteur. En effet, nous observons pour le gène LUC, un facteur de réactivation de 1.5 chez lhp1-4 alors qu’il est supérieur à 2 chez clf-29. Notons que dans un fond lhp1-4, la réactivation du gène LUC est similaire à celle de l’endogène. Ce résultat suggère que LHP1 pourrait être responsable d’une régulation transcriptionnelle au locus NRT2.1, complémentaire à CLF. Cependant, plusieurs études suggèrent que CLF et LHP1 pourraient en grande partie agir de manière concertée (Derkacheva et al. 2013 ; Wang et al. 2016). Afin d’analyser un éventuel effet synergique ou redondant de ces mutations sur les niveaux de transcrits NRT2.1 et LUC, nous avons généré le double mutant lhp1-4 clf-29 dans la lignée pNRT2.1(1201)::LUC qui sera prochainement étudié.
Figure 3.6 : Impact de la mutation *lhp1-4* sur l'expression de *NRT2.1* et *pNRT2.1::LUC*, après 7 jours de croissance sur 0.3 mM KNO₃.
(A) Niveau de transcrits *NRT2.1* chez la lignée sauvage (WT) et chez le mutant *lhp1-4*.
(B) Niveau de transcrits *LUC* chez la lignée sauvage et mutante *lhp1-4*.
Les tests statistiques comparent les données du mutant à celles de la lignée sauvage sur trois réplicats biologiques. *p < 0.05, **p < 0.01, ***p < 0.001
3. Discussion et perspectives

Les données bibliographiques indiquent que la dynamique des H3K27me3 pourrait réguler l'expression de NRT2.1 sur une condition où il est réprimé (HN). L'axe principal de ma thèse a été d'explorer l'importance de cette dynamique dans la régulation de NRT2.1 en réponse aux variations en N. Nous avons d'abord analysé l'impact des mutations clf-29 et swn-3 au locus NRT2.1 ainsi qu'au locus GUS dans une lignée pNRT2.1(456)::GUS cultivée sur une condition répressive (HN). Cette analyse révèle que la mutation swn-3 n’impacte pas l’enrichissement en H3K27me3 par rapport au sauvage contrairement à celle de clf-29, suggérant que CLF est la méthyltranférase qui intervient principalement dans le dépôt des H3K27me3 au locus NRT2.1. Néanmoins, l’enrichissement en H3K27me3 chez le double mutant clf-29 swn-3 est d’autant plus réduit (quasi nul, données non présentées), suggérant que SWN participe également au dépôt des H3K27me3 au locus NRT2.1 ou de façon redondante suite à la perte de CLF. Cependant, la perte des H3K27me3 dans clf-29 n'est pas suffisante pour induire une plus forte transcription au locus sur HN. De façon inattendue, la perte des H3K27me3 sur une condition permissive pour l'expression de NRT2.1 (LN) conduit à une plus forte activité transcriptionnelle du GUS ainsi que du NRT2.1 endogène, suggérant un rôle de CLF (complexe répresseur) dans la régulation transcriptionnelle de NRT2.1, non pas sur une condition répressive (HN) mais sur une condition fortement activatrice (LN), où NRT2.1 est un des gènes les plus exprimés dans le génome. Cependant, cette plus forte activité est nettement plus importante pour le gène rapporteur que pour le gène endogène. Cette analyse a été reconduite dans d'autres lignées promoteur-rapporteur (pNRT2.1(1201)::LUC et pNRT2.1(1974)::GFP) dont la taille du promoteur est plus importante et des insertions dans le génome différentes. Chez les lignées sauvages, plus on augmente la taille du promoteur, plus le niveau d'expression du gène rapporteur est important. Dans la lignée pNRT2.1(1201)::LUC clf-29, nous obtenons les mêmes résultats que la lignée pNRT2.1(456)::GUS clf-29, avec encore une fois, une différence d’activité promotrice entre endogène et gène LUC. Ainsi, la régulation dépendante de PRC2 que nous observons agit principalement au niveau de l’activité du promoteur, et un mécanisme additionnel répresseur semble maintenir l'homéostasie des transcrits NRT2.1. Dans la lignée pNRT2.1(1974)::GFP nous observons une extinction du gène GFP et du gène NRT2.1 endogène uniquement dans un fond clf-29. Cette extinction des gènes est mise en place dès l'obtention d'une lignée homozygote clf-29 et est dirigée par la méthylation de l'ADN. Ces résultats suggèrent que la
mutation *clf*-29 entraîne une trop forte activité transcriptionnelle. Cela pourrait expliquer le rôle de CLF sur cette condition LN très activatrice: éviter que l'état transcriptionnel au locus *NRT2.1* ne soit trop important, ou autrement dit, un rôle de modulation. Nous avons vérifié que CLF a bien une action directe au locus *NRT2.1*. Sur LN, nous retrouvons CLF associé au locus *NRT2.1* et les régulateurs connus de *NRT2.1* ne semblent pas impactés par la mutation *clf*-29. De plus, l'analyse tissu-spécifique révèle un fort enrichissement en H3K27me3 dans le cortex alors que le promoteur *NRT2.1* est fortement actif dans ce tissu. Cet enrichissement est aussi fort dans les cellules compagnes du phloème (où le promoteur n'est pas actif) suggérant que CLF cible *NRT2.1* indépendamment de ces territoires d’expression. La différence du niveau d'expression de *NRT2.1* entre les deux tissus réside en une très nette augmentation du niveau en H3K4me3 au locus *NRT2.1* dans le cortex. Cela suggère que la dynamique des H3K4me3 pourrait être importante dans la régulation de *NRT2.1* en réponse aux variations en azote alors que la dynamique des H3K27me3 agirait principalement sur la modulation de l’activité du promoteur. De manière surprenante, nos expériences de ChIP séquentielle, visant à associer physiquement H3K4me3 et H3K27me3 au locus *NRT2.1* n’ont jamais donné de résultat positif (données non présentées). *NRT2.1* étant également fortement enrichi en H3K9ac (racine entière), il serait intéressant d'analyser cette marque à l'échelle d'un tissu. L'introduction de la mutation *clf*-29 dans la lignée cellules compagnes du phloème modifie le patron d'expression du promoteur utilisé pour construire cette lignée, ce qui la rend inutilisable. Cette analyse ne pourra donc pas être conduite dans un fond *clf*-29, néanmoins l'analyse de l'impact de *clf*-29 à l'échelle du cortex sera prochainement entreprise afin de caractériser plus finement l’impact de la mutation *clf*-29 dans un tissu où *NRT2.1* est fortement exprimé.

Les analyses tissu-spécifique suggèrent que la dynamique des signaux d’activation, notamment ceux liés à la marque activatrice H3K4me3, pourraient diriger l'expression de *NRT2.1*. Plusieurs évidences renforcent cette hypothèse : (i) le niveau en H3K27me3 est similaire entre le cortex et les cellules compagnes du phloème alors que le niveau en H3K4me3 est nettement appauvri dans ces dernières par rapport au cortex, (ii) chez le mutant *clf*-29 le niveau en H3K27me3 est fortement réduit au locus *NRT2.1* suggérant que les cellules internes sont également impactées (non vérifié à l'échelle d'un tissu), (iii) NLP7, qui est nécessaire à l'induction des transporteurs de nitrate, est exprimé dans les tissus de la stèle (xylème et péricycle) (Bellegarde et al. 2017), pourtant (iv) les sections transversales de racines dans un fond *clf*-29 exprimant la construction *pNRT2.1::GUS* ne présentent pas
d'activité du promoteur dans les tissus internes de la racine. Ces observations suggèrent que malgré la diminution en H3K27me3 et la présence de NLP7, le promoteur NRT2.1 doit présenter un enrichissement en H3K4me3 pour être actif. Certaines évidences obtenues sur un autre modèle (présentées infra) permettent de renforcer cette hypothèse.

Dans un autre modèle, nous avons cherché à analyser si la dynamique des H3K4me3 est corrélée à l'induction de NRT2.1 en réponse au nitrate (réponse primaire au nitrate, données non présentées). Des expériences préliminaires ont consisté à cultiver les plantes sur succinate d’ammonium pendant 7 jours suivis d'une induction par le nitrate de 30 minutes afin de comparer les niveaux de transcrits et l'enrichissement en marques activatrices avant et après induction au niveau de gènes sentinelles de cette réponse : NRT2.1 et NIR1. Les résultats révèlent que NRT2.1 et NIR1 présentent déjà sur succinate d’ammonium un état chromatinien permisssif pour leur expression (présence de H3K4me3) alors que les niveaux de transcrits sont relativement bas. Cet enrichissement est maintenu en réponse au nitrate et est fortement enrichi dans le corps du gène au locus NIR1. Ainsi, dans le cadre de la réponse primaire au nitrate, la présence des H3K4me3 sur deux gènes sentinelles (NRT2.1 et NIR1) alors que leur activité transcriptionnelle est quasi nulle, suggère que dans ce modèle H3K4me3 n’est pas une conséquence d’une forte activité transcriptionnelle mais qu’un pré-marquage en H3K4me3 pourrait être important pour l’induction. Pour compléter l'analyse de cette réponse, il serait intéressant d'étudier l'état transcriptionnel à ces locus en étudiant, par immunoprécipitation, l'état de phosphorylation de la queue CTD de Pol II dans le but (i) d'étudier sa présence au locus, et (ii) d'analyser son activité. Il est probable que la Pol II soit présente au locus mais en attente d'un signal nitrate (potentiellement dirigé par NLP7) pour entrer en phase d'élongation productive (Pol II pausing). Dans cette réponse, nous n'avons pas analysé l'enrichissement en H3K9ac alors que sur LN, NRT2.1 présente un fort enrichissement. La dynamique des H3K9ac (dépôt et retrait) semble importante dans la nutrition, notamment en réponse à une carence en phosphate (Chen et al. 2015). Il est possible que la dynamique de cette marque soit également importante dans la réponse aux variations en N.

Le fait que l'induction transcriptionnelle dans un fond clf-29 soit généralement plus importante pour les gènes rapporteurs qu'au locus endogène, au sein de nos lignées, suggère qu'un élément répresseur intervient au locus NRT2.1 en modulant (i) l’activité transcriptionnelle en fonction du contexte génomique (régulation transcriptionnelle), ou (ii) le niveau de transcrits. Nos résultats nous ont permis d’exclure l’hypothèse qu’une régulation
post-transcriptionnelle est mise en place au locus NRT2.1 (pas de surveillance dirigée par les XRN, et une stabilité des transcrits NRT2.1 similaire entre la lignée sauvage et clf-29). Nous avons également analysé l’impact de la présence du gène NRT2.1 sur la réactivation d’une construction promoteur-gène-rapporteur dans un fond clf-29 et nrt2.1-1. Nous obtenons des résultats similaires à la lignée promoteur-LUC en matière de réactivation dans un fond clf-29 (pour une taille de promoteur équivalente), suggérant que le gène NRT2.1 ne contient pas d’éléments répresseurs dans sa séquence génique. A l’inverse, les expériences de run-on montrent clairement que l’induction transcriptionnelle dans clf-29 est plus faible au locus NRT2.1 que pour un promoteur rapporteur. Par la suite, nous avons donc recherché si autre acteur chromatinien répresseur, différent de CLF, intervenait au locus NRT2.1. LHP1, un membre du complexe PRC1, constituait un bon candidat puisqu’il est étroitement lié aux membres de PRC2, notamment CLF (Bratzel et al. 2010 ; Derkacheva et al. 2013 ; Pu & Sung 2015 ; Wang et al. 2016), et est également associé au locus NRT2.1 sous condition répressive (Zhang et al. 2007 ; Veluchamy et al. 2016). Afin d’analyser un éventuel rôle de LHP1 au locus NRT2.1, nous avons choisi une approche de génétique inverse par l’introduction de la mutation lhp1-4 dans la lignée pNRT2.1(1201pb)::LUC dans le but d’étudier l’impact de la mutation de LHP1 sur les niveaux de transcrits NRT2.1 et LUC. La mutation lhp1-4 entraîne également une réactivation du locus NRT2.1 et LUC qui semble tout de même plus modeste au locus LUC que celle entraînée par la mutation clf-29 (respectivement facteur 1.5 et 2), suggérant que LHP1 participe également à la régulation de l’activité du promoteur NRT2.1 en condition de forte expression (LN), avec CLF ou de façon indépendante. LHP1 semble important pour l’établissement de contacts distants entre différentes régions du génome d’Arabidopsis (boucle chromatinienne). Nous avons donc étudié plus en détail les données de conformation 3D de la chromatine (genome-wide chromatin conformation capture, Hi-C) dépendante de LHP1 publiées par Veluchamy et al. (2016). Les auteurs observent (toujours sur une condition répressive pour l’expression de NRT2.1), une interaction chromosomique entre NRT2.1 (en 5’ du gène) et NRT2.2 (promoteur proximal), qui est un homologue proche de NRT2.1 situé en tandem inversé. Cette boucle est dépendante de LHP1 (perdue chez le mutant lhp1) (Veluchamy et al. 2016). Le fait que la mutation lhp1-4 conduise à la réactivation du locus NRT2.1 suggère que cette interaction crée une boucle chromatinienne répressive au locus. Ce type de boucle chromatinienne, entre deux régions adjacentes, dépendant de PRC2 et LHP1 a déjà été observé, notamment au niveau du gène de réponse à l’auxine PINOID (PID) (Ariel et al. 2014). Dans ce modèle, en absence d’auxine, PID est
réprimé par la formation d’une boucle avec le locus adjacent, \textit{APOLO} (long intergenic non coding RNA, lincRNA), qui rend le promoteur \textit{PID} inaccessible. \textit{APOLO} est quant à lui fortement réprimé par dépôt de H3K27me3 et de méthylation sur l’ADN. L’ajout d’auxine active la déméthylation de l’ADN et des H3K27me3 au locus \textit{APOLO} et ouvre la boucle chromatinienne ce qui, couplé à l’enrichissement en H3K9ac, permet à la Pol II de transcrire les deux régions. Les transcrits \textit{APOLO} s’accumulent progressivement, recrutent LHP1, et activent les voies de méthylation de l’ADN (par la RdDM) et des H3K27 (par PRC2). Cela conduit à reformer de la boucle chromatinienne répressive qui est ensuite maintenue par la RdDM. Les auteurs concluent que la dynamique de cette boucle entraîne une oscillation de l’expression du gène en réponse à un signal environnemental (Ariel et al. 2014). Ce modèle présente certaines similitudes avec le nôtre. En effet, nous avons vu que \textit{NRT2.1} est marqué par H3K27me3 et H3K9ac sur LN. De plus, \textit{NRT2.2} suit le même profil de régulation que \textit{NRT2.1} mais son implication dans l’influx de nitrate est beaucoup plus modeste que celle de \textit{NRT2.1} (Cerezo et al. 2001 ; Lezhneva et al. 2014) et sa fonction dans la nutrition reste peu connue. Nous observons également un fort enrichissement en H3K27me3 au locus \textit{NRT2.2} en 5’ comme dans le corps du gène (données non présentées). Ainsi, il est possible que la fonction de \textit{NRT2.2} soit de réguler \textit{NRT2.1} de façon similaire à \textit{APOLO}. Dans le modèle PID-APOLO, la méthylation de l’ADN au locus \textit{APOLO} joue un rôle important alors que dans notre modèle, le gène \textit{NRT2.1} ne semble pas être méthylé (5’ à 3’) ; cependant nous n’avons pas analysé le gène \textit{NRT2.2} (seul \textit{APOLO} est méthylé). Ainsi, l’élément répresseur additionnel à CLF pourrait être une structure chromatinienne en boucle dirigée par LHP1.

Notre analyse sur LN ne permet pas de discuter de la dynamique de cette boucle. La fonction de cette boucle dans le modèle PID-APOLO serait d’entraîner une oscillation de l’expression du gène en réponse à un signal environnemental (Ariel et al. 2014). En conséquence, le point majeur du travail à venir est d’étudier le rôle de LHP1/CLF dans la régulation de \textit{NRT2.1} et/ou la mise en place de la boucle chromatinienne, au sein d’un système plus dynamique en matière d’activités transcriptionnelles en réponse aux variations nutritionnelles, telle que la réponse à une carence. En effet, lorsque les plantes sont transférées de 10mM de KNO\textsubscript{3} à 0N, l’expression de \textit{NRT2.1} augmente progressivement durant les premiers jours (premier ou deuxième jour) puis diminue pour revenir à son état d’origine après 4 ou 5 jours (oscillation de l’expression de \textit{NRT2.1}). Lors d’une étude précédente, il a été montré que le retrait de nitrate réprime miR169, dont la fonction est de cibler des facteurs de transcription de la famille NFYA, et d’affecter ainsi l’expression des transporteurs de
nitrate (Zhao et al. 2011). Dans le cadre de la floraison, les NFYA, B et C interagissent avec REF6 dans le but de retirer les H3K27me3 au locus SOC1. Ainsi, il est possible que le retrait de nitrate lors d’une carence implique un retrait des H3K27me3 dans le but d’augmenter rapidement l’activité transcriptionnelle des transporteurs de nitrate. De ce fait, il serait intéressant de comparer dans cette réponse l’impact des simples mutants clf-29 et lhp1-4 ainsi que le double clf-29 lhp1-4 sur les niveaux de transcrits et l’état chromatinien (marques activatrice H3K4me3 et H3K9ac, et marque répressive H3K27me3) aux loci NRT2.1 et NRT2.2 afin de mieux comprendre le rôle de chaque acteur dans notre modèle. De même, il serait intéressant d’analyser l’impact des mutations pour les H3K27me3 déméthylases tels que REF6, ELF6 et JMJ13 (simple, double et triple mutants disponibles), sur l’induction de NRT2.1 et NRT2.2 en réponse à la carence. En parallèle, la structure et la dynamique de la boucle chromatinienne pourront être analysées par capture de la conformation du chromosome (3C), qui permet d’analyser l’interaction entre deux régions, dans un fond sauvage et mutants lhp1-4 clf-29 (simples et double mutant). À plus long terme, si cette structure chromatinienne présente une fonction régulatrice, il serait intéressant d’analyser si la perturbation de l’expression de NRT2.2 (en utilisant par exemple des lignées RNAi ou 35S::NRT2.2) impacte l’activité transcriptionnelle de NRT2.1. En d’autres termes, NRT2.2 a-t-il un rôle similaire à APolo?

Cette analyse dans le cadre d’une carence en N, permettra (i) d’analyser le rôle des marques activatrices en réponse aux variations en N et (ii) de comprendre la fonction de LHP1, de CLF et de la dynamique H3K27me3 aux loci NRT2.1 et NRT2.2.

En conclusion, l’ensemble des résultats présentés dans cette partie suggèrent que deux acteurs chromatiniens répresseurs, CLF et LHP1, interviennent au locus NRT2.1 dans le but de moduler l’activité de son promoteur (potentiellement par la formation d’une boucle chromatinienne répressive), sur une condition où NRT2.1 présente une très forte activité transcriptionnelle. C’est à ce jour le premier travail qui démontre l’importance de membres des complexes Polycomb sur les gènes très fortement exprimés.
Chapitre 4

Analyse du rôle de HNI9/IWS1 en réponse aux variations en N
Figure 4.1 : Démarche expérimentale visant à rechercher les cibles de HNI9 à partir du transcriptome produit par Widiez et al. (2011).

(A) Recherche de gènes qui sont induits en condition de forte nutrition azotée (HN : 10 mM NH₄NO₃) en comparaison à une condition de faible nutrition azotée (LN : 0,3 mM KNO₃) chez une lignée sauvage, de manière dépendante de HNI9.

(B) Illustration des profils obtenus parmi la liste de 108 gènes obtenue en A.

(C) Illustration des catégories fonctionnelles, de cette liste de 108 gènes, obtenues par Virtual plant (à gauche) et Cytoscape (à droite).
1. Contexte

L'équipe a récemment observé, en accord avec les cartes épigénomiques développées par plusieurs laboratoires, qu'un enrichissement en marques répressives H3K27me3 au locus NRT2.1 coïncide avec sa répression par une forte concentration en azote (10mM NH₄NO₃, HN) et que cela est dépendant du facteur chromatinien HNI9/IWS1 (Widiez et al. 2011; Figure 1.9). En effet, chez le mutant hni9-1, NRT2.1 présente sur HN une plus forte activité du promoteur et un niveau de transcrits plus important en comparaison à une lignée sauvage, corrélés avec une diminution en marques répressives H3K27me3. Cependant, nous avons vu dans le Chapitre 3 que la perte en H3K27me3 dans un fond clf-29 n’est pas suffisante pour réactiver NRT2.1 sur HN, suggérant que la réactivation de NRT2.1 dans hni9-1 n'est pas due à la diminution des niveaux en H3K27me3 au locus. Une étude au locus FLC a montré que la diminution des niveaux en H3K27me3 pouvait être une conséquence d’une plus forte expression, et non pas l’inverse (Buzas et al. 2011), ce qui pourrait être également le cas pour NRT2.1 dans un fond hni9-1. Il a été montré sur divers organismes incluant Arabidopsis, que HNI9/IWS1, SPT6, des protéines H3K27me3 déméthylases et H3K36 tri-méthyltrasférase appartiennent à un même complexe qui a pour rôle de faciliter l'élongation de la transcription (Yu et al. 2008 ; Zhang et al. 2008 ; Yoh et al. 2008 ; Chen et al. 2012 ; Wang et al. 2013 ; Li et al. 2010 ; Wang et al. 2014). Dans la littérature, HNI9/IWS1 est donc décrit comme appartenant à un complexe ayant une fonction d'activateur transcriptionnel qui participe au retrait des H3K27me3 et non à leur dépôt. Cette apparente contradiction suggère que la perte des H3K27me3 dans un fond mutant hni9-1 n'est pas causale de la réactivation transcriptionnelle de NRT2.1 mais potentiellement une conséquence de sa réactivation. Compte tenu du rôle d'activateur transcriptionnel de HNI9, nous avons émis l'hypothèse que la réactivation de NRT2.1 sur HN, chez hni9-1, est un effet indirect. L’objectif du travail présenté dans cette partie a donc été de rechercher les cibles directes de HNI9 et comprendre son rôle en réponse à une forte nutrition N.
Tableau 4.1 : Description des cinq gènes sélectionnés dans la catégorie « activité oxidoréductase » dont l’induction sur 10 mM NH₄NO₃ (HN) est dépendante de HNI9.
Ces gènes ont été utilisés comme modèle d’étude à la compréhension du rôle de HNI9 sur HN.

<table>
<thead>
<tr>
<th>AGI</th>
<th>Nom</th>
<th>Fonction</th>
</tr>
</thead>
<tbody>
<tr>
<td>At5g48000</td>
<td>CYTOCHROME P450, FAMILY 708, SUBFAMILY A, POLYPEPTIDE 2", CYP708A2, THAH, THAH1, THALIANOL HYDROXYLASE, THALIANOL HYDROXYLASE 1</td>
<td>Ajoute groupement hydroxyl sur triterpene thalianol</td>
</tr>
<tr>
<td>At1g52820</td>
<td>2-oxoglutarate-dependent dioxygenase, putative</td>
<td>activité oxidoréductase</td>
</tr>
<tr>
<td>At2g29630</td>
<td>PY, PYRIMIDINE REQUIRING, THIAMINC, THIC</td>
<td>biosynthèse thiamine (vitamine B1)</td>
</tr>
<tr>
<td>At2g36690</td>
<td>2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein</td>
<td>procédés d’oxidation-réduction, biosynthèse des flavanoïdes</td>
</tr>
<tr>
<td>At2g42250</td>
<td>"CYTOCHROME P450, FAMILY 712, SUBFAMILY A, POLYPEPTIDE 1", CYP712A1</td>
<td>procédés oxidation-réduction, réponse à un stress oxydant</td>
</tr>
</tbody>
</table>
2. Résultats

2.1. Recherche des cibles directes de HNI9/IWS1 en condition de forte nutrition azotée

Dans un premier temps, nous avons recherché les potentielles cibles directes de HNI9 en réponse aux variations en N. Dans ce but, nous avons utilisé le transcriptome de hni9-1 en condition de faible ou forte nutrition azotée, réalisé dans l'équipe (Widiez et al. 2011). Nous y avons recherché les gènes qui sont induits en condition de forte nutrition azotée (HN, 10mM NH₄NO₃) en comparaison à une condition de faible nutrition azotée (LN, 0.3mM KNO₃) chez une lignée sauvage, de manière dépendante de HNI9 (Figure 4.1). Avec les critères de comparaison les plus stricts (cf. Chapitre 2 paragraphe 10), nous obtenons une liste de 108 gènes dont l'induction par les fortes teneurs en N est dépendante de HNI9 (Tableau S4.1 en Annexe). Nous avons tout d'abord validé par RT-qPCR le phénotype de hni9-1 sur HN pour certains gènes issus de cette liste (Figure 4.2 et Tableau 4.1). Parmi les 5 gènes testés, tous présentent un niveau de transcrits plus important sur HN que sur LN dans une lignée sauvage, ce qui valide l'induction de ces gènes par le HN. Néanmoins, nous observons dans cette lignée, une induction plus modeste pour les gènes AT2G29630 et AT5G48000. Concernant ce dernier, nous observons également un niveau d’expression déjà important sur LN. L’expression de ces gènes sur HN est altérée chez hni9-1, suggérant que l’induction de ces gènes sur HN est bien dépendante de HNI9. Par la suite, ces 5 gènes nous serviront de modèles d’étude à la compréhension du rôle de HNI9 dans cette réponse (partie 2.3). Cette liste a ensuite été analysée par différents outils d'analyse bio-informatique (Biomaps de Virtual Plant et BiNGO de Cytoscape) permettant d'identifier les catégories fonctionnelles sur-représentées dans une liste de gènes (Figure 4.1, Tableau S4.2 pour l’obtention des catégories fonctionnelles, et Tableau S4.3 pour la répartition des gènes selon la catégorie). Ces différents outils ont mis en évidence, dans la liste de gènes dont l’induction par les fortes teneurs en N dépend de HNI9, une surreprésentation des fonctions liées aux mécanismes d’oxydo-réduction. Chez une lignée sauvage, une forte nutrition azotée entraîne donc l’induction d’un ensemble de gènes impliqués dans les réactions d’oxydo-réduction et les fonctions antioxydantes, suggérant que cette condition génère la production d'espèces réactives de l’oxygène (ROS). De manière intéressante, des résultats non publiés de l’équipe soutiennent l’hypothèse que les ROS pourraient réguler NRT2.1. En effet, sur 1mM de KNO₃, l’ajout de H₂O₂ modifie l’expression de NRT2.1. De même, l’ajout d’ascorbate (antioxydant)
Figure 4.2 : Validation par RT-qPCR de l’induction par le HN (10 mM NH₄NO₃) de gènes impliqués dans l’état redox, dont l’activation est dépendante de HNI9, chez un sauvage cultivé 7 jours sur HN ou LN (0.3 mM KNO₃) et validation du phénotype hni9-1 sur HN.

Les tests statistiques comparent les données du mutant à celles du sauvage en fonction des conditions de culture, et comparent uniquement chez le sauvage, la différence due aux conditions de culture.

*p < 0.05, **p < 0.01, ***p < 0.001
réprime *NRT2.1* (communication de L. Lejay). L’ensemble de ces observations suggère que (i) une forte nutrition N engendrerait la production de ROS et (ii) que HNI9 serait nécessaire pour l'activation transcriptionnelle des gènes de détoxification de ces ROS. Nous avons donc émis l’hypothèse que HNI9aurait un rôle dans l’activation de la réponse de détoxification des ROS, qui seraient générés par les fortes teneurs en N.

2.2. Analyse du niveau de ROS sur HN et impact phénotypique

Les espèces réactives de l’oxygène (ROS, par exemple : H\(_2\)O\(_2\), O\(_2\)••, OH•) sont des molécules signal qui régulent et maintiennent de nombreuses fonctions physiologiques (développement, prolifération cellulaire, différenciation etc.) (Mittler, 2017). Néanmoins, si leur niveau n’est pas contrôlé, un excès de ROS peut être délétère et entraîner la dégradation des membranes (périoxydation des lipides), des dommages sur l’ADN, l’oxydation de protéines etc. (Choudhury et al. 2017). Cette augmentation excessive des ROS, nommée stress oxydant, peut provenir de nombreuses causes abiotiques telles que la sècheresse, les températures élevées mais également en réponse à une attaque pathogène (réponse hypersensible) (Mehterov et al. 2012). Afin de contrôler le niveau de ROS, les plantes ont développé un large panel d’enzymes de détoxification et de molécules antioxydantes (catalase, périoxydase, ascorbate, cytochromes P450 etc.) (Mittler, 2017).

2.2.1. Analyse du niveau de ROS en fonction de la nutrition azotée chez des lignées sauvage et mutante *hni9-1*

Dans cette partie nous avons cherché à analyser si une forte nutrition N engendre une production de ROS. Pour cela, nous avons analysé le niveau de ROS sur HN, en utilisant la condition LN comme contrôle, dans une lignée sauvage et le mutant *hni9-1*. Cette partie de l’analyse a été réalisée par Amel Maghiaoui (stagiaire M1) que j’ai partiellement encadrée. Le niveau de ROS a été dosé par fluorométrie à l’aide d’une sonde fluorescente non spécifique, le DFFFDA. En parallèle, le niveau de H\(_2\)O\(_2\) est mesuré par fluorométrie grâce à l’HRP (Horseradish peroxydase) qui en présence de H\(_2\)O\(_2\), transforme le réactif AmplexRed en résorufine (produit coloré détectable par fluorométrie et/ou colorimétrie). Dans la lignée sauvage, les résultats ne révèlent pas de différence significative entre les deux conditions de culture que ce soit pour le niveau global de ROS ou celui de H\(_2\)O\(_2\) (Figure 4.3A). Cela suggère que la culture sur HN n’entraîne pas, dans un fond sauvage, d’accumulation de ROS. Cette observation est cohérente avec les résultats exposés *supra* suggérant que ce niveau est
Figure 4.3 : Analyse de l'impact de la nutrition azotée sur la production d'espèces réactives de l’oxygène (ROS).
Dosage fluorométrique des ROS (sonde DFFDA) et de l'H_2O_2 (réaction avec AmplexRed) chez un sauvage (WT) (A) et le mutant hni9-1 (B) après 10 jours de croissance sur LN (0.3 mM KNO_3) et HN (10 mM NH_4NO_3). Les tests statistiques comparent les données des deux conditions de culture au sein du même génotype. *p < 0.05, **p < 0.01, ***p < 0.001
stabilisé chez une lignée sauvage grâce à l'induction de gènes impliqués dans la détoxification des ROS. À l'inverse, l’analyse dans un fond mutant *hni9-1* révèle un niveau global de ROS significativement plus élevé sur HN que sur LN, et de façon similaire, un niveau plus élevé de H₂O₂ sur HN (Figure 4.3B). De plus, les niveaux de ROS et de H₂O₂ sur LN (condition contrôle) sont similaires entre le mutant et le sauvage. Cela suggère que dans un fond *hni9-1*, la croissance spécifiquement sur HN entraîne la production et l’accumulation de ROS. À partir de ces résultats, nous avons émis l’hypothèse que la culture sur HN pourrait conduire à la production de ROS dont le niveau serait modulé chez une plante sauvage grâce à l’activation de gènes impliqués dans leurs détoxification.

2.2.2. Impact phénotypique de l'accumulation de ROS sur HN

Par la suite, nous avons cherché à analyser l’impact phénotypique de l’élévation du niveau de ROS sur HN dans un fond *hni9-1*. Dans un premier temps, nous avons cherché à renforcer, par une autre approche, l’observation que l’accumulation de ROS est prédominante sur HN dans un fond *hni9-1*, en analysant l’impact de cette élévation sur la croissance racinaire. En effet, un des phénotypes résultant de l’accumulation des ROS, et notamment de H₂O₂, consiste en une diminution de la longueur de racine primaire (Tsukagoshi et al. 2010 ; Dunand et al. 2007). Nous avons donc mesuré la longueur de la racine primaire dans une lignée sauvage et mutante *hni9-1* cultivées sur LN et HN. Nous avons ajouté à notre analyse un mutant déficient en ascorbate, *vtc2* (réduction du niveau d’ascorbate à environ 20% de celui du sauvage, Collin et al. 2008). L’ascorbate est un antioxydant qui cible l’H₂O₂ (Mittler, 2017). De ce fait, l’analyse du mutant *vtc2* nous permettra de valider que l’accumulation de H₂O₂ est responsable des phénotypes observés dans un fond *hni9-1* (contrôle positif). Les résultats révèlent une longueur de la racine primaire similaire entre les deux conditions chez le sauvage. Ce résultat est en accord avec l’ensemble des résultats obtenus précédemment : la culture sur HN active des programmes transcriptionnels de détoxification des ROS afin de moduler le niveau de ROS et limiter leur accumulation sur HN. À l’inverse, nous observons, chez les deux mutants, une diminution de la croissance racinaire sur HN et sur LN (Figure 4.4A). L’altération de la croissance racinaire chez ces mutants est d’autant plus forte sur HN en comparaison à la condition LN, suggérant que cette diminution de la longueur de la racine est due à l’augmentation du niveau de H₂O₂. Nous observons également que le mutant *vtc2* présente un phénotype drastique sur HN avec une très forte diminution de la longueur de la racine primaire et une très faible production de racines latérales (Figure 4.4A et B). Ces
Figure 4.4 : Analyse de l’impact phénotypique dû à l’accumulation d’espèces réactives de l’oxygène (ROS) chez les mutants *hni9-1* et *vtc2* en comparaison au sauvage (Col-0) après 7 jours de croissance.

(A) Longueur de la racine primaire (cm) après 7 jours de croissance sur LN (0.3 mM KNO₃) et HN (10 mM NH₄NO₃). Les tests statistiques comparent les données de chaque mutant à celles du sauvage en fonction des conditions de culture (*p < 0.05, **p < 0.01, ***p < 0.001).

(B) Phénotype plantes entières après 7 jours de croissance sur LN et HN.

(C) Analyse du niveau de transcrits *NRT2.1* chez les mutants *hni9-1* et *vtc2* en comparaison au sauvage.
résultats renforcent l’hypothèse qu’une forte nutrition N conduit à la production de ROS, et notamment de H₂O₂, dont le niveau doit être contrôlé afin de permettre une croissance racinaire optimale.

Dans un second temps, nous avons cherché à compléter les résultats précédents en testant l’hypothèse selon laquelle la réactivation du locus NRT2.1 sur HN dans un fond hni9-1 est due à l’accumulation de ROS. Pour cela, nous avons réalisé une première analyse du niveau de transcrits NRT2.1 en comparant les mutants hni9-1 et vtc2 cultivés sur HN (Figure 4.4C) qu’il faudra reproduire afin de réaliser des tests statistiques. Les résultats montrent que dans une lignée sauvage, l’activité du promoteur NRT2.1 est très faible sur HN. Le mutant hni9-1 présente bien une activité transcriptionnelle accrue par rapport au sauvage. En ce qui concerne le mutant vtc2, le niveau de transcrits NRT2.1 est également supérieur à celui du sauvage mais semble inférieur à celui de hni9-1. Ainsi la mutation vtc2 phénoméopie la mutation hni9-1, l’augmentation des niveaux de transcrits NRT2.1 étant bien à nouveau corrélée avec une augmentation des niveaux de ROS. Ce résultat renforce l’hypothèse selon laquelle le maintien de l’activité du promoteur NRT2.1 sur HN dans un fond mutant hni9-1 est dû à l’élévation du niveau de ROS.

2.3. Dynamique chromatinienne aux loci de gènes impliqués dans l’état redox dont l’activation sur HN est altérée chez hni9-1

Les résultats fournis dans ce chapitre suggèrent que la croissance sur une forte nutrition N conduit, dans un fond sauvage, à la production de ROS dont le niveau est modulé grâce à l’activation d’un programme transcriptionnel de détoxification des ROS dirigé par HNI9. HNI9 étant associé à des protéines impliquées dans les modifications chromatinienes, notamment SDG8 (H3K36 tri-méthyltransférase) et REF6/ELF6 (H3K27me3 déméthylase), il est probable que l’état chromatinien des gènes de détoxification des ROS soit important pour leur induction. Dans ce cas, le mutant hni9-1 cultivé sur HN devrait présenter un défaut d’enrichissement en marques activatrices, ou un défaut de retrait de marques répressives. Afin de tester cette hypothèse, nous avons analysé, sur HN, l’état chromatinien aux locus de gènes impliqués dans l’état redox dont l’activation sur HN est altérée chez hni9-1. Nous avons comparé l’enrichissement en marque répressive H3K27me3 avec l’enrichissement en marques activatrices, H3K4me3, H3K36me3 et H3K9ac (Figure 4.5). Nous avons cherché un profil commun aux gènes analysés afin d’identifier le rôle général de HNI9 dans cette réponse. Ainsi, la mutation hni9-1 ne semble pas impacteur globalement le niveau de marques
Figure 4.5 : Analyse de l’enrichissement en marques répressive (H3K27me3) et activatrices (H3K4me3, H3K36me3 et H3K9ac) aux loci des gènes impliqués dans l’état redox, dont l’induction sur HN est dépendante de HNI9, chez un sauvage (WT) et le mutant hni9-1, après 7 jours de croissance sur 10 mM NH₄NO₃.

Les résultats présentés dans cette figure sont normalisés par le niveau en H3 puis par le contrôle positif (LEC2 pour H3K27me3 en 5’ et ACT pour les marques activatrices : ACT7 pour H3K4me3 et H3K9ac en 5’ et ACT2 pour H3K36me3 dans le corps du gène).
répressives H3K27me3, ni celui des marques activatrices H3K36me3 et H3K9ac. De manière surprenante, l’enrichissement en H3K4me3 semble constitutivement réduit par rapport à la lignée sauvage, suggérant que l’activation de ces gènes par HNI9 pourrait impliquer, dans ce modèle, non pas des H3K36 tri-méthyltransférase (tel que décrit dans la littérature) mais des H3K4tri-méthyltransférase. Notons tout de même que la position des amorces utilisées (en 5' des gènes) ne permet pas d'observer les zones d'enrichissement maximal pour H3K36me3.

3. Conclusion et perspectives

Nous avons vu que la culture en condition de forte teneur en N conduit à l’accumulation de ROS, notamment de H2O2, chez le mutant hni9-1. Cette accumulation de ROS chez le mutant est cohérente avec le défaut d’induction de nombreux gènes impliqués dans leur détoxification dont une des catégories fonctionnelles la plus représentée correspond à des réactions oxydo-réduction (enzyme de détoxification de type peroxydase/catalase, biosynthèse des flavonoïdes, des caroténoïdes et de la cystéine, transport du fer etc.), suggérant que HNI9 pourrait avoir un rôle dans l’activation des programmes contrôlant le niveau de ROS, qui serait générée suite à une forte nutrition N. Chez les animaux, une nutrition riche en lipide ou carbohydrate entraîne un stress oxydant qui augmente la peroxydation des lipides et diminue le statut en antioxydant (Newsholme et al. 2016). Chez les plantes, à notre connaissance, aucune évidence n’est établie entre une forte nutrition et la production de ROS. Nous avons par la suite cherché à valider le phénotype d’accumulation des ROS sur HN par une autre approche. Dans la littérature, l’ajout de H2O2 conduit à une diminution de la longueur de la racine primaire (Tsukagoshi et al. 2010 ; Dunand et al. 2007). Nous avons donc analysé l’impact phénotypique de cette accumulation de ROS sur (i) la croissance racinaire et (ii) sur les niveaux de transcrits NRT2.1. En effet, nous avons émis l’hypothèse que le phénotype hni9-1 au locus NRT2.1 (maintien d’une activité transcriptionnelle sur une condition fortement répressive) est un effet indirect dirigé par l’accumulation des ROS chez le mutant hni9-1. Ainsi, l’analyse de la croissance racinaire chez hni9-1 comme chez un mutant déficient en ascorbate (vtc2), révèle une diminution de la croissance racinaire principalement manifeste en condition HN, confirmant que les ROS s’accumulent sur HN dans ces fonds mutants. De même, nous avons vu que la mutation vtc2 entraîne, comme pour hni9-1, une augmentation de l’activité transcriptionnelle au locus NRT2.1 en condition répressive HN ce qui renforce l’hypothèse que le phénotype hni9-1 est dû à l’accumulation de ROS. Cela
suggère également que l’accumulation excessive de ROS pourrait réguler transcriptionnellement *NRT2.1*, en accord avec les résultats non publiés de l’équipe. Pour finir, notre analyse globale des profils d’enrichissement en marques activatrices au locus de certains des gènes induits sur HN de manière dépendante de HNI9, suggère que la mutation *hni9-1* impact principalement le niveau en H3K4me3 alors qu’il ne semble pas avoir d’action notable sur les niveaux en H3K36me3 et H3K27me3, malgré l’interaction de HNI9 avec SDG8 (H3K36 tri-méthyltransférase) (Wang et al. 2014) et REF6/EFL6 (H3K27me3 déméthylase) (Yu et al. 2008) dans la réponse aux brassinostéroïdes. Ainsi dans l’éventualité où HNI9 aurait pour fonction de participer au dépôt des marques activatrices, ce serait, dans ce modèle, au travers des H3K4me3 (globalement diminués dans un fond *hni9-1*) et potentiellement au travers des H3K9ac (uniquement pour *At2G36690*). Étant donné le rôle très général d’activateur transcriptionnel de HNI9, il est probable que HNI9 ait différents interactants selon la réponse considérée : des H3K36 tri-méthyltransférase et H3K27me3 déméthylases dans la réponse aux brassinostéroïdes et des H3K4 tri-méthyltransférases dans ce modèle. Néanmoins, il est également probable que HNI9 agisse en amont de ces protéines (pas d’interaction au sein d’un même complexe) par exemple en s’associant avec un facteur de transcription spécifique de cette réponse et potentiellement d’autres acteurs pouvant spécifier l’enzyme à recruter (H3K36 ou H3K4 tri-méthyltransférase).

Les points majeurs du travail à venir seront de : (i) vérifier que l’accumulation de ROS impacte l’activité transcriptionnelle de *NRT2.1*, (ii) analyser les niveaux de H3 et la densité en nucléosomes, (iii) étudier le rôle la dynamique des H3K4me3 dans l’induction des gènes de détoxification des ROS, et enfin (iv) rechercher les facteurs de transcription spécifiques d’une forte nutrition N qui dirigent HNI9 dans la régulation chromatinienne de ces gènes.

Afin d’analyser l’impact des niveaux de ROS sur l’activité transcriptionnelle au locus *NRT2.1*, nous envisageons d’analyser le niveau de transcrits *NRT2.1* ainsi que la croissance de la racine primaire en comparant sauvage et mutant *hni9-1* cultivés sur HN en présence d’antioxydant ou de H2O2. L’ajout d’antioxydant devrait complémer le phénotype *hni9-1* alors que l’ajout de H2O2 devrait l’accentuer. Il sera également important de vérifier que les gènes de détoxification des ROS induits sur HN ne soient pas réactivés dans un fond *hni9-1* suite à l’ajout d’une dose supplémentaire de H2O2 (mécanisme additionnel lié à un effet seuil).

Avant d’analyser l’état chromatinien, notamment en H3K4me3, aux loci des gènes de détoxification des ROS, il nous semble important d’analyser les niveaux en H3 et la densité
en nucléosomes de ces gènes en comparant une lignée sauvage et mutante hni9-1. En effet, HNI9 interagit avec SPT6 qui a été caractérisée chez la levure en tant que chaperonne d’histone. SPT6 se lie in vivo avec les histones et préférentiellement avec l’histone H3, dans le but d’assembler le nucléosome (Bortvin & Winston 1996) et est un acteur important pour l’élongation de la transcription (Hartzog et al. 1998). Des études plus récentes ont révélé que la fonction de SPT6 chez la levure, serait de faciliter le réassemblage des nucléosomes (par son activité de chaperonne d’histone H3/H4) après le passage de la Pol II (revue : Venkatesh & Wokman 2015). Malgré un rôle de SPT6 plutôt au niveau de l’élongation de la transcription, il n’est pas exclu que le complexe HNI9/SPT6 impacte la densité en nucléosomes dans le but d’activer la transcription. En effet, de nombreux exemples sont présents dans la littérature concernant l’altération de la densité en nucléosomes par des remodeleurs chromatiniens dans le but d’activer la transcription (revue : Han et al. 2015).

Pour compléter les résultats précédents et analyser en détail le rôle des H3K4me3 dans ce modèle, il serait pertinent d’analyser si cette marque est nécessaire à l’induction par le HN des gènes de détoxicification de ROS. Pour cela une approche de génétique inverse est envisageable. De nombreuses protéines sont capables de déposer des H3K4me3, néanmoins, dans la littérature deux H3K4 tri-méthyltransférases semblent majoritaires: ARABIDOPSIS HOMOLOGUE OF TRITHORAX 1 (ATX1 ou SET DOMAIN GROUP 27, SDG27) et ARABIDOPSIS TRITHORAX-RELATED 3 (ATXR3 ou SDG2). ATXR3/SDG2 serait requis pour la déposition globale de H3K4me3 (Guo et al. 2010), alors que ATX1/SDG27 aurait des rôles distincts selon la région du gène considérée (Ding et al. 2011). Les mutants de ces acteurs seront donc à tester en priorité. L’impact de ces mutations devra être analysé sur un plus grand nombre de gènes impliqués dans les réactions d’oxydoréductions. Dans le but d’augmenter notre résolution, nous introduisons la mutation hni9-1 dans les lignées INTACT. En effet, l’analyse spécifique d’un seul tissu devrait maximiser le phénotype hni9-1 et potentiellement diminuer la variabilité de la réponse.

HNI9 étant un acteur chromatiniens général, il est probable que ce soit ses partenaires protéiques, potentiellement des facteurs de transcriptions, qui dirigent la spécificité de la réponse, comme c’est le cas en réponse aux brassinostéroïdes, avec le facteur de transcription BES1 (Li et al. 2010). De ce fait, l’identification des facteurs de transcription impliqués spécifiquement sur une forte nutrition N et dirigeant les modifications chromatiniennes permettra de renforcer ce modèle et également de mieux comprendre le lien qu’il existe entre une forte nutrition N et état redox. Dans ce but, nous générons une lignée
$pIWS1::IWS1::FLAG$ (en cours de sélection) et nous disposons de la lignée $p35S::GFP::IWS1$ (Widiez et al. 2011), qui permettront à l'aide d'anticorps spécifiques dirigés respectivement contre le FLAG ou la GFP d'analyser les partenaires protéiques d'IWS1 par Co-Immuno-précipitation, notamment les facteurs de transcription. Ces lignées permettront également de valider l’action directe de HNI9 au locus des gènes de détoxification des ROS par Immuno-précipitation de la chromatine.

Ces résultats sont les premiers à montrer l’importance de la régulation chromatinienne dans les réponses de détoxification des ROS chez les plantes. À plus long terme, il serait intéressant d’élargir cette analyse à d’autres voies nutritionnelles afin d’analyser si la production de ROS sur HN est dû spécifiquement à une forte nutrition N ou à tout type de nutrition excessive.
Chapitre 5

Interaction entre CLF et NRT2.1 dans la modulation de l’architecture racinaire
Figure 5.1 : Analyse de l’activité du promoteur NRT2.1 dans une lignée sauvages et mutante clf-29, exprimant la construction pNRT2.1::GUS, cultivées 7 jours sur condition répressive (10 mM NH₄NO₃).

(A) Profil à l’échelle de la plante entière dans la lignée sauvage (WT) et mutante clf-29.

(B) Détails en fonction du stade de développement des primordia (stade IV jusqu’au stade jeunes racines latérales (RL)). em : stade émergence.

Les flèches bleues pointent la localisation de la coloration GUS lorsque celle-ci est faible.
1. Contexte

Nous avons vu dans le Chapitre 3 que CLF régule directement $NRT2.1$. Comme détaillé précédemment, cette régulation est surtout manifeste en condition LN, où la mutation de CLF entraîne une stimulation très marquée de l’activité du promoteur $NRT2.1$ dans l’épiderme et le cortex racinaires. Si cette stimulation n’est pas retrouvée en condition HN, nous avons néanmoins fait une observation inattendue. En effet, l’activité du promoteur $NRT2.1$ est fortement augmentée sur milieu HN dans les primordia des racines latérales (RL) et à la base de ces racines chez les plantes $clf-29$ par rapport aux plantes sauvages (Figure 5.1). Ces résultats sont surprenants car ils indiquent qu’en condition répressive pour $NRT2.1$, CLF a pour fonction de réprimer l’activité du promoteur $NRT2.1$ spécifiquement à la base des RL et dans les primordia, ce qui n’a pas de signification évidente en matière de nutrition azotée de la plante. Ceci pourrait par contre être révélateur d’une autre fonction de $NRT2.1$ et de CLF dans le développement des RL. En effet, plusieurs études ont déjà impliqué ces deux gènes dans le contrôle du développement des primordia de RL (présentés infra).

Le développement des primordia de RL se fait en différentes étapes classées en stades qui sont définis par le nombre de couches cellulaires visibles dans le primordium en coupe longitudinale (Malamy & Benfey 1997) (Figure 2.2). La première étape est celle de l’initiation et consiste en une division anticlinoïde de 2 cellules adjacentes du péricycle (cellules fondatrices) de la racine primaire face aux pôles xylémiens (stade I). Ces cellules vont subir une succession de divisions périclines pour former un primordium à quatre couches cellulaires (stade II à IV selon le nombre de couches). Le primordium prend ensuite une forme de dôme et grossit grâce à une combinaison de divisions anticlines et périclines couplées à l’élongation cellulaire (stade V à VII), pour finalement émerger de la racine primaire (stade émergence, em) (Malamy & Benfey 1997 ; Péret et al. 2009). Nous avons considéré dans notre étude qu’un primordium devient une RL après la formation de 10 cellules latérales (voir Figure 2.2; selon Malamy & Benfey 1997). Le méristème apical des primordia s’organise à partir du stade V (visible en stade VI) mais n’est actif qu’après émergence (Guyomarc'h et al. 2010).

Les données concernant le rôle de $NRT2.1$ dans la régulation du développement des RL restent confuses. En effet, en présence d’un ratio sucre/N élevé dans le milieu extérieur, $NRT2.1$ a un rôle répresseur sur le développement des RL (Little et al. 2005). À l’inverse, en
Figure 5.2 : Analyse au microscope confocal de l’activité du promoteur NRT2.1 dans une lignée sauvage exprimant la construction pNRT2.1::GFP cultivées 7 jours sur condition répressive (10 mM NH₄NO₃).
Le stade de développement de chaque primordium est précisé en blanc. em : stade émergence.
absence de sucre et en présence d'une quantité limitante en NO\textsubscript{3}-, NRT2.1 stimule ce développement (Remans et al. 2006a). Malgré cette apparente contradiction, ces deux articles s'accordent néanmoins sur deux faits : (i) l’effet de NRT2.1 s’observe à un stade très précoce du développement de RL, qui est celui de l'initiation des primordia, et (ii) cet effet ne peut s’expliquer par l’activité de transport de NO\textsubscript{3} de NRT2.1, car il s’observe également en l’absence de NO\textsubscript{3} dans le milieu. Le mécanisme par lequel NRT2.1 agit sur l’initiation des primordia est inconnu. Par ailleurs, dans des conditions similaires aux nôtres (croissance 10 jours en jours longs sur MS/2 avec 1% sucre), une mutation de CLF entraîne une augmentation de la longueur de la racine primaire et du nombre de RL. Ceci a été expliqué par le fait que CLF est fortement exprimé dans le méristème basal de la racine primaire (où se fait la spéciation des cellules fondateuses des primordia), ainsi que dans ces cellules ellesmêmes, et y réprime, par dépôt de H3K27me3, l’expression génique du transporteur d’auxine PIN1 (Gu et al. 2014). Cela a pour effet de diminuer les maxima d’auxine dans les zones du péricycle où se forment les primordia, inhibant ainsi leur initiation (Gu et al. 2014).

Malgré ces données de la littérature soulignant un rôle de NRT2.1 et CLF au stade d’initiation des primordia, nos résultats indiquent que CLF régule l’expression de NRT2.1 dans les primordia à des stades plus tardifs. En effet, l’analyse de l’activité du promoteur NRT2.1 sur HN a révélé que, dans le fond sauvage, la coloration GUS n’est visible qu’à partir du stade émergence, alors qu’elle apparaît chez clf-29 dès le stade V (Figure 5.1). Ce décalage entre sauvage et mutant clf-29 est cependant vraisemblablement dû au fait que le mutant clf-29 présente une plus forte activité du promoteur NRT2.1 (générale, cf. Chapitre 3) ce qui rend la coloration plus perceptible. En effet, les observations réalisées sur une lignée pNRT2.1::GFP révèlent que dans ce fond sauvage, le promoteur NRT2.1 devient actif à partir du stade V (Figure 5.2). Dans cette lignée, l’activité du promoteur NRT2.1 est présente uniquement dans les primordia des RL, et couvre l’ensemble du primordium contrairement aux colorations GUS qui sont limitées à la base du primordium. Cette différence du patron d’activité du promoteur entre les deux lignées GUS et GFP est peut-être due à la différence de la taille du promoteur contrôlant le gène rapporteur : 456 pb pour le GUS et 1974 pb pour la GFP.

Dans ce contexte, nos observations suggèrent que CLF puisse contrôler le développement des RL en réprimant non seulement l’expression de PIN1, au stade d’initiation des primordia, mais aussi celle de NRT2.1 à ce même stade ou à des stades plus tardifs. Le travail décrit dans ce chapitre a eu pour objectif de tester cette hypothèse, en analysant les éventuelles altérations
Figure 5.3 : Impact de la présence de sucre sur le phénomène racinaire du sauvage (Col-0) et du mutant nrt2.1-2 après 5 jours de transfert sur ON.

(A) Longueur de la racine primaire.

(B) Densité d’initiations correspondant au nombre total de primordia (tout stades confondus) et RL, normalisés par la longueur de la racine primaire.

Les tests statistiques sont calculés en utilisant la condition 0 % sucre du sauvage comme référence. Les étoiles bleues soulignent les différences significatives correspondant à l’effet du sucre chez Col-0. *** p<0.001, ** p<0.01, * p<0.5
Chapitre 5 Résultats des différentes étapes du développement des primordia de RL chez les mutants *clf-29* et *nrt2.1-2* en réponse à la disponibilité en NO₃⁻ dans le milieu.

2. Résultats

2.1. Effet des mutations *nrt2.1-2* et *clf-29* sur l'architecture racinaire

2.1.1. Définition du phénotype *nrt2.1-2* sur l'initiation des primordia en présence de 0.1% de sucre

L'ensemble des expériences présentées dans le Chapitre 3 ont été réalisées en présence de 0.1% de sucre. Or, NRT2.1 présente des effets opposés sur l'initiation des primordia en fonction de l'absence ou de la présence d'une forte dose de sucre (7%) (respectivement Remans et al. 2006a ; Little et al. 2005). De ce fait, nous avons dans un premier temps cherché à caractériser le phénotype du mutant *nrt2.1-2* en présence d'une faible dose de sucre (nos conditions) et en l’absence de N (Figure 5.3). Les résultats révèlent que la mutation *nrt2.1-2* n'impacte pas la longueur de la racine primaire mais la présence de 0.1% de sucre la diminue chez le sauvage et le mutant (Figure 5.3A). Le rôle de NRT2.1 étant lié à l'initiation des primordia, nous avons analysé la densité des primordia le long de la racine primaire (nombre total d'initiations normalisé par la longueur de la racine primaire), chez le sauvage et chez *nrt2.1-2* en présence et en absence de sucre (Figure 5.3B). Tout comme Remans et al. (2006a), nous observons en absence de sucre, une densité de primordia diminuée chez *nrt2.1-2* par rapport au sauvage, suggérant que NRT2.1 stimule l'initiation des primordia. À l'inverse, en présence de 0.1% de sucre, nous obtenons des résultats similaires à Little et al. (2005), avec une plus forte densité de primordia chez *nrt2.1-2* par rapport au sauvage, suggérant que NRT2.1 réprime l'initiation des primordia. Nous confirmons donc que la présence de sucre, même à faible concentration, impacte le phénotype du mutant *nrt2.1-2* sur l'initiation des primordia. Ainsi, dans nos conditions (0.1% de sucre et en l’absence de nitrate) NRT2.1 joue un rôle répresseur sur l'initiation. Or d'après la bibliographie, CLF agit dans le même sens (Gu et al. 2014). Cela constitue une première indication que l’effet de CLF sur l’initiation des primordia ne peut vraisemblablement pas s’expliquer par la répression exercée par CLF sur *NRT2.1*.
Figure 5.4 : Phénotype racinaire du sauvage et des mutants nrt2.1-2 et clf-29 après 5 jours de transfert sur différentes concentrations en KNO₃ ou sur HN (10 mM NH₄NO₃).

(A) Longueur de la racine primaire.
(B) Densité d’initiations correspondant au nombre total de primordia (tous stades confondus) et RL normalisés par la longueur de la racine primaire.
(C) Densité en RL correspondant au nombre total de RL relevé normalisé par la longueur de la racine primaire.

Les tests statistiques sont calculés chez les mutants en utilisant comme référence la condition correspondante chez le sauvage.

*** p<0.001, ** p<0.01, * p<0.5
2.1.2. Effet des mutations nrt2.1-2 et clf-29 sur l'initiation des primordia en réponse à la disponibilité en N dans le milieu

Pour compléter les résultats précédents et analyser en détail les rôles de NRT2.1 et de CLF dans le développement des RL en réponse à N, les phénotypes des plantes sauvages et des mutants nrt2.1-2 et clf-29 cultivés 5 jours sur 0, 0.3, 1, 10 mM de KNO₃ et HN (10mM NH₄NO₃), ont été caractérisés en fonction de la longueur de la racine primaire et de la densité des primordia et des RL (Figure 5.4). Chez tous les génotypes, la longueur de la racine primaire varie peu selon la source d’N (données statistiques non présentées dans la Figure 5.4A). Cependant, nous observons une diminution significative entre des plantes cultivées sur 0N ou HN par rapport aux plantes cultivées sur milieux contenant NO₃⁻ comme seule source de N. Le mutant clf-29 présente systématiquement une racine primaire plus longue que le sauvage, indépendamment de la concentration en N (Figure 5.4A). Le phénotype inverse est observé pour le mutant nrt2.1-2, sauf sur milieu 0N, où la longueur de la racine primaire n’est pas statistiquement différente de celle du sauvage.

En ce qui concerne les primordia de RL, leur densité n’est que peu affectée chez le sauvage par la concentration externe en N, sauf sur 0N, où cette densité est réduite, et à l’inverse sur HN, où elle augmente (données statistiques non présentées dans la Figure 5.4B). Par rapport au sauvage, le mutant nrt2.1-2 présente à nouveau une densité d’initiation augmentée sur 0N, mais au contraire une diminution des initiations sur milieux contenant N (statistiquement significative sur 0.3 et 10mM KNO₃ uniquement). Ainsi, l’effet de NRT2.1 sur l’initiation des primordia peut être inversé suivant que N soit présent ou non dans le milieu, comme c’est le cas pour le sucre. Le mutant clf-29 présente systématiquement une plus forte densité d’initiations que le sauvage. Cela suggère que CLF a pour fonction de réprimer la formation des primordia des RL indépendamment de la teneur en N du milieu. Cela suggère également que le phénotype observé s’explique plutôt par l’action répressive de CLF sur PIN1, qui est connu pour toujours activer l’initiation des primordia (Gu et al. 2014), que par celle sur NRT2.1, dont la mutation a des effets variables sur cette initiation.

En ce qui concerne la densité des RL (Figure 5.4C), la mutation clf-29 conduit à une augmentation de cette densité sur 0.3, 10mM KNO₃ et HN (non significatif sur 1mM), ce qui est cohérent avec la densité accrue des primordia chez ce mutant (Figure 5.4B), et en accord avec les résultats publiés précédemment (Gu et al. 2014). À l’inverse, la mutation nrt2.1-2 conduit à une très forte diminution de la densité en RL en présence de NO₃⁻ et sur HN (pas de différence sur 0N), qui ne s’explique pas par un défaut d’initiation aussi marqué (Figure 5.4B).
Figure 5.5 : Distribution des primordia entre les différents stades normalisée par le nombre total d’initiations chez des plantes sauvages (Col-0) et mutantes nrt2.1-2 et clf-29, 5 jours après transfert sur différentes concentrations en KNO₃ ou sur HN (10 mM NH₄NO₃) en présence de 0.1 % de sucre.

em : stade émergence, RL : racine latérale.

Les tests statistiques sont calculés chez le sauvage en utilisant la condition 0.3 mM comme référence. Les tests statistiques sont calculés chez les mutants en utilisant comme référence la condition et le stade correspondant chez le sauvage. La couleur des étoiles précise si la valeur obtenue pour les mutants est significativement supérieure (vert) ou inférieure (rouge) à celle du sauvage. *** p<0.001, ** p<0.01, * p<0.5
suggérant que d'autres stades de développement des primordia doivent être altérés chez ce mutant pour y freiner le développement des RL.

2.1.3. Analyse de l'effet des mutations *nrt2.1-2* et *clf-29* sur le développement des primordia post-initiation

Nous avons cherché à caractériser plus en détail les phénotypes des mutants *nrt2.1-2* et *clf-29* en analysant la progression du développement des primordia, depuis leur initiation jusqu'à leur transformation en RL. Ceci peut être fait à un instant donné en mesurant la distribution des primordia entre les différents stades de développement (Malamy & Benfey 1997). Pour prendre en compte les différences du nombre total de primordia initiés entre génotypes, nous avons normalisé le nombre de primordia relevés pour chaque stade par le nombre total d'initiations (Figure 5.5). Les résultats obtenus pour les stades I et II étant peu fiables (grandement dépendants du plan de l'observation), les différences significatives pour ces stades ne seront pas discutées.

Chez le sauvage, c’est essentiellement la présence ou l’absence de N dans le milieu qui provoque des phénotypes marqués. En effet, en présence de N, sa concentration ou sa forme ne semblent que peu impacter la distribution des primordia entre les différents stades de développement (les tests statistiques analysant l'impact de la source de N chez le sauvage utilisent comme référence la condition 0.3 mM). Dans cette expérience, nous observons toutefois un effet positif des milieux 1 et 10 mM sur la densité de RL plus marqué que dans l’expérience précédente (Figure 5.4), peut-être associé à une plus faible proportion de primordia restant aux stades VI/VII (Figure 5.5). L’absence de N dans le milieu modifie drastiquement le patron de développement des primordia. Nous observons une très forte diminution de la proportion de primordia qui génèrent au final des RL, s’expliquant par une augmentation également très marquée de la proportion des primordia aux stades IV et V, largement majoritaires (ils représentent à eux seuls près de 50 % des primordia totaux observés sur 0N). Ce résultat est parfaitement cohérent avec le modèle proposé antérieurement par l'équipe pour rendre compte de la stimulation locale par le NO₃⁻ du développement des RL. Ce modèle postule qu'en absence de NO₃⁻, la majorité des primordia est bloquée à des stades plus précoces que le stade V, et que le NO₃⁻ agit en levant ce blocage (Krouk et al. 2010 ; Bouguyon et al. 2015 ; Bouguyon et al. 2016).

La mutation *clf-29* impacte peu la distribution des primordia entre les différents stades de développement (Figure 5.5). Son effet positif sur la densité de RL mentionné précédemment
Figure 5.6 : Nombre de primordia observé pour chaque stade, normalisé par le nombre total d'initiations, chez des plantes sauvages (col) et mutantes nrt2.1-2, 5 jours après transfert sur différentes concentrations en KNO₃ (0, 0.3 et 5mM KNO₃) en absence de sucre.

em : stade émergence, RL : racine latérale.

La significativité chez le mutant est calculée par rapport à la condition et au stade correspondant chez le sauvage. *** p<0.001, ** p<0.01, * p<0.5
Chapitre 5

Résultats

(Figure 5.4C) est également retrouvé ici sur la proportion de primordia qui génère effectivement des RL, mais uniquement sur 0.3mM et sur HN, sans qu’il soit réellement possible d’attribuer cet effet positif à une diminution générale de la proportion des primordia observée à un des stades plus précoces. Ceci suggère néanmoins que CLF réprime le développement des RL (Figure 5.4C) non seulement en limitant l’initiation des primordia (Figure 5.4B) mais aussi en freinant le développement de ces primordia (Figure 5.5). En absence de NO₃⁻, clf-29 présente un profil similaire au sauvage (blocage en stade IV/V et forte diminution du % RL).

Le mutant nrt2.1-2 ne présente pas de différence phénotypique par rapport au sauvage en absence de N ou sur milieu HN (Figure 5.5). De manière remarquable, ce mutant présente en présence de NO₃⁻ seul (y compris sur 10mM), un phénotype qui rappelle celui du sauvage cultivé sur 0N, à savoir une forte diminution de la proportion de primordia ayant abouti à des RL, associée à une augmentation du % des primordia en stade IV/V sur 0.3 et 1mM, mais aussi en stade VI/VII sur 1 et 10mM. Ce résultat suggère que chez nrt2.1-2, la fourniture de NO₃⁻ dans le milieu n’entraîne pas la levée du blocage du développement des primordia au stade IV/V observée en absence de N, et ne permet pas non plus une progression normale du programme de développement au-delà du stade V/VI.

Pour confirmer le phénotype observé chez nrt2.1-2 et tester sa robustesse vis-à-vis de la présence de sucre dans le milieu, nous avons reconduit le même type d’analyse en absence de sucre et sur un nombre plus réduit de conditions (0, 0.3 et 5mM KNO₃). Nous obtenons globalement les mêmes résultats que ceux exposés précédemment : chez nrt2.1-2, une proportion de primordia restant aux stades IV à VI en présence de NO₃⁻ bien plus élevée que chez le sauvage, conduisant à la diminution du % RL (Figure 5.6). Ces résultats montrent que contrairement à son effet sur l’initiation des primordia, l’action de NRT2.1 sur leur développement ultérieur n’est pas affectée par la présence ou l’absence de sucre dans le milieu.

En conclusion, CLF et NRT2.1 semblent avoir des rôles distincts sur le développement des RL. CLF limite le nombre d’initiations indépendamment de la teneur en N, et ne semble agir que de manière limitée sur les stades ultérieurs de développement des primordia. NRT2.1 réprime également l’initiation en absence de NO₃⁻ (effet dépendant du sucre) mais a un effet positif fort sur le développement des primordia (surtout aux stades IV/V/VI) en réponse à la présence de NO₃⁻ (effet indépendant du sucre). Ainsi, ces résultats indiquent qu’il n’est à
priori pas possible d’expliquer l’effet de CLF sur le développement des RL par la répression que cette protéine exerce sur l’expression de NRT2.1.

2.2. Modèle hypothétique du rôle de NRT2.1 dans le développement des primordia de racines latérales

Bien que le sujet de cette thèse ne concerne à priori pas le rôle de NRT2.1 dans la régulation du développement des RL, les résultats présentés supra apportent des données originales sur un rôle non précédemment identifié de NRT2.1, qui mérite d’être discuté plus en détail.

En effet, nous confirmons que chez le sauvage, l’inhibition du développement des primordia en l’absence de NO₃⁻ dans le milieu est associée à un blocage aux stades IV/V, et que la levée de cette inhibition s’observe pour des concentrations externes en NO₃⁻ relativement faibles, comprises entre 0.3 et 1mM (Krouk et al. 2010). L’élément marquant qui émerge de nos travaux est toutefois que la levée de l’inhibition par le NO₃⁻ dépend de NRT2.1, puisque le mutant nrt2.1-2 présente, sur un milieu contenant de 0.3mM à 5mM KNO₃, un phénotype similaire à celui du sauvage sur ON. Or, l’équipe a montré préalablement que le blocage d’une majorité de primordia en stades IV/V sur milieu dépourvu de NO₃⁻ s’explique par l’action du transcepteur NRT1.1, qui empêche l’accumulation d’auxine dans ces primordia, inhibant ainsi leur développement (Krouk et al. 2010 ; Bouguyon et al. 2016). Il est maintenant bien établi que NRT1.1 possède une fonction duale de transporteur/senseur (transcepteur) de NO₃⁻ (Remans et al. 2006b ; Ho et al. 2009 ; Gojon et al. 2011). D’une part, il contribue à l’absorption racinaire de NO₃⁻ en tant que transporteur membranaire (voir Chapitre 1). D’autre part, il active plusieurs voies de signalisation qui gouvernent un grand nombre de réponses de la plante au NO₃⁻, parmi lesquelles figurent celle du développement des primordia de RL (Krouk et al. 2010 ; Bouguyon et al. 2016). Sans entrer dans les détails, NRT1.1 possède une activité de transport d’auxine en plus de celle de NO₃⁻ (Krouk et al. 2010). En l’absence de NO₃⁻ dans le milieu, NRT1.1 s’exprime dans les primordia de RL à partir du stade IV, et y facilite le transport basipète de l’auxine vers la racine primaire, ce qui prévient l’accumulation de l’hormone dans les primordia (Krouk et al. 2010 ; Bouguyon et al. 2016). Privés d’auxine, les primordia stoppent alors leur développement au stade IV/V. Le NO₃⁻ lève ce blocage en supprimant l’effet répresseur de NRT1.1 de deux manières: en inhibant son activité de transport d’auxine (Krouk et al. 2010), et en empêchant la présence de la protéine NRT1.1 dans les primordia jusqu’à leur émergence (Bouguyon et al. 2016). Dans
Figure 5.7 : Modèle hypothétique du rôle de NRT2.1 dans le développement des primordia de stade V.

(A) En absence de nitrate (NO$_3^-$), NRT1.1 est exprimée dans les primordia et y facilite le reflux d’auxine empêchant son accumulation à l’apex des primordia et bloque leur développement en stade IV-V.

(B) En présence de NO$_3^-$, l’expression de la protéine NRT1.1 est réprimée dans les primordia et son transport d’auxine inhibé. Cela permet l’accumulation d’auxine dans l’apex des primordia et favorise leur développement en racines latérale (Adapté de Bouguyon et al. 2016). NRT2.1 pourrait être responsable de cette répression de NRT1.1 dans les primordia soit par une action directe sur NRT1.1, soit en assurant l’entrée du NO$_3^-$ dans la cellule dont la perception par un senseur interne réprimerait NRT1.1 (lignes rouges).

(C) Chez le mutant nrt2.1-2, l’absence de NRT2.1 empêchera la répression de NRT1.1 dans les primordia (défaut de perception du NO$_3^-$ ou action directe de NRT2.1 sur NRT1.1). NRT1.1 resterait exprimée dans les primordia et continuerait à transporter de l’auxine ce qui maintiendrait le blocage des primordia en stade IV-V de façon similaire à un sauvage cultivé en absence de NO$_3^-$ (cadre A).
ce contexte, l’observation que la fourniture de NO$_3^-$ au mutant *nrt2.1-2* ne permet pas de lever l’arrêt du développement des primordia au stade IV/V (Figure 5.5) suggère que NRT1.1 y est toujours présent et actif, et donc que NRT2.1 est requis pour assurer la répression de NRT1.1 par le NO$_3^-$.

Dans ce cadre, l’effet positif de NRT2.1 pourrait s’expliquer par au moins deux hypothèses (Figure 5.7). Premièrement, NRT2.1 aurait en présence de NO$_3^-$ un effet régulateur direct sur NRT1.1, en réprimant son expression et/ou son activité de transport d’auxine, par un mécanisme encore inconnu. NRT1.1 présentant une fonction de régulateur de NRT2.1 (Muños et al. 2004 ; Ho et al. 2009), il n’est pas exclu que la réciproque soit également vraie (boucle de régulation réciproque comme c’est le cas entre NRT1.1 et CIPK23, Ho et al. 2009). Deuxièmement, la répression de l’expression et/ou de l’activité de transport d’auxine de NRT1.1 est exercée par le NO$_3^-$ intracellulaire (et non par celui externe du milieu), ce qui nécessite l’absorption préalable de cet ion dans les cellules des primordia. NRT2.1 étant le transporteur majoritaire de NO$_3^-$ en faible concentration, il est probable que chez *nrt2.1-2* sur faible NO$_3^-$ (0.3mM et 1mM), l’influx de NO$_3^-$ soit très diminué par rapport au sauvage, et donc que la concentration intracellulaire du NO$_3^-$ demeure très faible, empêchant ainsi la répression exercée sur NRT1.1. Dans ce cas, NRT2.1 aurait simplement pour rôle de faire entrer le NO$_3^-$ dans les cellules des primordia, où il serait perçu par le mécanisme assurant la répression de NRT1.1. Bien que la seconde hypothèse soit en apparence la plus simple, le maintien d’un phénotype de blocage des primordia aux stades IV/VI chez le mutant *nrt2.1-2* sur NO$_3^-$ 5mM (Figure 5.6) n’est pas en accord avec elle, puisqu’il est bien établi qu’à cette concentration NRT2.1 ne participe que très marginalement à l’influx de NO$_3^-$ dans les racines (Cerezo et al. 2001 ; Filleur et al. 2001). Toutefois, certains de nos résultats imposent de prendre cette dernière conclusion avec prudence. En effet, il n’est dans ce contexte sans doute pas anodin d’observer que sur milieu HN, qui correspond à une condition répressive pour NRT2.1, le promoteur de ce gène reste néanmoins actif dans les primordia de RL (Figure 5.2). Ceci pourrait indiquer que, contrairement à ce qui se passe dans l’épiderme et le cortex (sites principaux de l’absorption racinaire de NO$_3^-$), NRT2.1 demeure un transporteur important pour l’influx intracellulaire de NO$_3^-$ dans les primordia au stade IV, même sur des milieux à concentration élevée en cet ion.
3. Conclusion et perspectives

Nous avons vu que CLF et NRT2.1 jouent vraisemblablement des rôles distincts dans le développement des RL (Figure 5.4 et 5.5) : CLF présente un effet général, indépendant de la présence de N, qui limite l'initiation des primordia (en accord avec Gu et al. 2014) et potentiellement limite la poursuite du développement des primordia. À l'inverse, NRT2.1 favorise ou réprime l'initiation en absence de NO\textsubscript{3} selon la présence de sucre (potentiellement pour coordonner métabolisme carboné et N) (Figure 5.3). De plus, il promeut le développement des primordia aux stades IV/V en présence de NO\textsubscript{3} (Figure 5.5). Il ne semble donc pas y avoir de lien fonctionnel entre CLF et NRT2.1 sur l'architecture racinaire. Afin de vérifier que CLF et NRT2.1 interviennent bien à des niveaux différents dans la régulation de l’architecture racinaire, nous avons généré par croisement le double mutant \textit{nrt2.1-2 clf-29} (en cours de sélection), dont le phénotype racinaire sera prochainement analysé. De même, la mutation \textit{nrt2.1-2} correspondant à une délétion de \textit{NRT2.1} et \textit{NRT2.2}, nous générons une lignée simple mutant \textit{nrt2.1} par méthodologie Crispr (en cours de développement) afin de vérifier que le phénotype observé chez \textit{nrt2.1-2}, correspond bien à la mutation \textit{nrt2.1} et non à la mutation de \textit{nrt2.2} (dont le rôle est peu caractérisé). Le rôle de CLF sur l’initiation des primordia s'explique par son action sur \textit{PIN1} qui inhibe l’établissement des cellules fondatrices des primordia (Gu et al. 2014). Néanmoins, l'analyse de la répartition des stades chez le mutant \textit{clf-29} révèle une diminution du % d’émergence sur la plupart des milieux qui est souvent corrélée à une augmentation du % RL, suggérant que CLF a aussi un effet répresseur sur le développement des primordia post-émérgence. Or le méristème des primordia devient fonctionnel à partir de ce stade. Il est donc probable que la dynamique H3K27me3 soit importante pour l'acquisition de l'identité des cellules méristématiques. De même, il est probable que la dynamique H3K27me3 soit importante pour la dédifférenciation des cellules du péricycle qui vont former le primordium. De ce fait, il serait pertinent de tester l’impact du maintien du niveau des H3K27me3 sur l’initiation des primordia et sur le stade émergence par l’analyse des mutants pour des H3K27me3 déméthylases, tels que REF6, ELF6 et JMJ13. Nous avons donc généré les doubles et triple mutants pour ces H3K27me3 déméthylases.

Notre analyse globale du rôle de NRT2.1 dans le contrôle par le NO\textsubscript{3} du développement des racines latérales a permis de mettre en évidence de nouveaux résultats particulièrement intéressants. Nous avons confirmé la présence d’un blocage des primordia aux stades IV/V en
absence de N chez un sauvage et démontré que la levée de ce blocage en réponse au NO₃⁻ est dépendante de NRT2.1 (Figure 5.5 et 5.6). L'impact de la mutation nrt2.1-2 aux stades IV-V est également cohérent avec l’activation du promoteur NRT2.1 aux mêmes stades dans les lignées promoteur-rapporteur (Figure 5.1 et 5.2).

Le point majeur du travail à venir sera de tester la validité du modèle proposé dans la Figure 5.7. Notamment, il sera important de vérifier la prédiction que NRT2.1 favorise le développement des primordia en y activant la répression de NRT1.1 par le NO₃⁻, et donc en restaurant une accumulation d'auxine dans ces organes. De ce fait, il faudra dans un premier temps définir la localisation de la protéine NRT2.1, sur différentes concentrations en N, afin d'identifier les tissus où NRT2.1 exerce sa fonction: épiderme/cortex et/ou au sein même des primordia. En effet, NRT2.1 pourrait être le transporteur majeur de l'influx de NO₃⁻ dans les primordia quelle que soit la teneur en N. Or l'analyse de la teneur en NO₃⁻ dans les primordia semble très difficile à mettre en place expérimentalement. L'utilisation de bio-senseurs de NO₃⁻ serait un bon outil pour étudier un éventuel rôle d'approvisionnement en NO₃⁻ des primordia par NRT2.1. Par la suite, il sera intéressant d'analyser l'impact de la mutation nrt2.1-2 sur la localisation de la protéine NRT1.1 ainsi que sur l'accumulation d'auxine dans les primordia de stade IV-V. En effet, si NRT2.1 réprime NRT1.1 (directement ou indirectement via son transport de NO₃⁻), le mutant nrt2.1-2 devrait présenter un maintien de la protéine NRT1.1 dans les primordia en présence de NO₃⁻, ainsi qu'une absence d'accumulation d'auxine (réprimée par NRT1.1). Dans le but de valider cette hypothèse, nous avons cherché à introduire par croisement la mutation nrt2.1-2 d’une part dans une lignée pNRT1.1::NRT1.1::GFP ; chl1-5 et d’autre part, dans une lignée DR5::GFP. Les gènes NRT2.1 et NRT1.1 étant liés, nous n'avons pas pu obtenir par croisement la lignée nrt2.1-2;pNRT1.1::NRT1.1::GFP en présence de la mutation chl1-5. Nous avons tout de même analysé cette lignée (dans un fond sauvage NRT1.1) mais aucun signal de la GFP n’a pu être observé, y compris en absence de la mutation nrt2.1-2 (suggérant que la protéine native est privilégiée). Pour pallier à cela, nous cherchons à obtenir un mutant nrt2.1 dans cette lignée pNRT1.1::NRT1.1::GFP ;chl1-5 et dans un fond Col-0 par méthodologie Crispr (lignées en cours de développement).
Chapitre 6

Conclusion générale
Conclusion générale

Les analyses de l’équipe qui ont précédé mon travail de thèse ont montré que sur une condition répressive pour l’expression de NRT2.1 (HN), le locus est enrichi en marque répressive H3K27me3, de manière dépendante du gène HNI9. En effet, le mutant hni9-1 présente une réactivation transcriptionnelle de NRT2.1 sur HN, en corrélation avec une perte en marque répressive H3K27me3 au locus. Cette observation interroge sur le rôle de la chromatine en réponse aux fluctuations environnementales lors de la nutrition, et plus particulièrement sur le rôle de H3K27me3 au locus NRT2.1.

L’objectif principal de mon travail de thèse fut d’analyser la contribution de la dynamique de H3K27me3 (catalysés par PRC2) dans la régulation transcriptionnelle de NRT2.1 et d’identifier le rôle de HNI9 dans cette dynamique. Cette analyse a permis dans un premier temps de montrer que la présence de H3K27me3 n’intervient pas dans la répression de NRT2.1 sur HN, suggérant également que la réactivation de NRT2.1 chez le mutant hni9-1 cultivé sur HN n’est pas due à la perte de H3K27me3. À l’inverse, la perte ou le retrait de H3K27me3 au locus NRT2.1 chez hni9-1 pourrait être la conséquence d’une plus forte activité transcriptionnelle. Enfin, HNI9 agirait quant à lui indirectement au locus NRT2.1 sur HN. En effet, chez le mutant hni9-1 cultivé sur HN, les gènes de détoxification des ROS présentent un défaut d’activation par rapport à la lignée sauvage, ce qui conduit à l’accumulation de ROS (notamment de H₂O₂) chez le mutant, qui à leur tour pourraient induire l’expression de NRT2.1.

Cette analyse a également permis de caractériser un rôle qui semble non canonique de PRC2 en tant que modulateur d’une forte activité transcriptionnelle, indépendamment de HNI9. Nous montrons dans cette étude que PRC2 (notamment CLF) module l’activité du promoteur de gènes (incluant NRT2.1), sur une condition où ils sont fortement actifs, par dépôt de H3K27me3. Cette modulation pourrait également faire intervenir un membre du complexe PRC1, LHP1, agissant avec CLF ou de façon indépendante. L’état chromatinnien au locus NRT2.1 n’ayant pas été analysé dans un fond mutant lhp1-4, il est également possible que la protéine LHP1 soit importante pour la fonction de CLF, notamment si LHP1 participe à la formation d’un repliement au locus (boucle chromatinnienne entre NRT2.1 et NRT2.2). La présence d’une interaction physique entre NRT2.1 et NRT2.2, sous condition répressive, dépendante de LHP1 (Veluchamy et al. 2016) soulève de nombreuses questions quant à la fonction de ce contact. Ce contact étant observé sur une condition répressive, crée-t-il un environnement répresseur ? Est-il spécifiquement établi sur une condition répressive ? Est-ce
Conclusion générale

que CLF participe à sa formation ? Les effets des mutations que nous observons sont-ils dus à la perturbation de cette structure ?

Le recoupement de données bibliographiques obtenues sur des conditions similaires révèle que 139 autres gènes présentant une forte activité transcriptionnelle sont enrichis en H3K27me3 (6.6% d'une sélection des 10% des gènes les plus exprimés sur HN selon Widiez et al. 2011, confrontée aux données H3K27me3 selon Roudier et al. 2011). Parmi ces 139 gènes, 120 (86%) sont également des cibles directes de LHP1 (Veluchamy et al. 2016), suggérant que cette surveillance d’une activité promotrice lorsqu’un gène est fortement exprimé remplit un rôle plus général et donc que NRT2.1 n'est pas un cas isolé. PRC1 et PRC2 régulant normalement les gènes faiblement exprimés, nous avons reconduit cette analyse sur des gènes peu exprimés présentant un enrichissement en H3K27me3 (38% de la sélection des 10% des gènes les moins exprimés sur HN selon Widiez et al. 2011). Nous observons que 91% sont ciblés par LHP1. Ainsi, que les gènes soient faiblement ou fortement exprimés, si H3K27me3 est présent, une forte proportion de ces gènes (environ 90%) seront également la cible de LHP1. La proportion de gènes marqués par H3K27me3 est tout de même plus importante auprès des gènes peu exprimés (38%) que sur les gènes fortement exprimés (6.6%).

Quelle que soit la nature de la répression (boucle répressive et/ou modulation du promoteur NRT2.1 par H3K27me3) il est clair que NRT2.1 est finement contrôlé par des complexes répresseurs sur une condition où il est fortement exprimé. Jusqu’à présent, les complexes PRC2 et PRC1 étaient connus pour réprimer des gènes faiblement exprimés, ce qui rend notre modèle d’étude original. Une hypothèse qui permettrait d'expliquer ce contrôle de NRT2.1 d’un point de vue plus "classique" quant au rôle de PRC2 serait que H3K27me3 aurait pour fonction d’éteindre certaines copies du gène NRT2.1 dans des cellules polyploïdes telles que les cellules du cortex et de l’épiderme, où NRT2.1 est exprimé. En effet, les cellules racinaires du cortex et de l’épiderme présentent majoritairement 8 copies d’ADN (Dietrich et al. 2017). Ainsi l’introduction de gènes rapporteurs sous contrôle du promoteur NRT2.1 dans un fond clf-29 (qui n’est donc pas totalement en mesure de surveiller le nombre de copies qui s’expriment) pourrait expliquer la mise en place de l’extinction du gène (silencing) si l’accumulation des transcrits est trop importante. Nous ne connaissons pas le nombre de copie présent dans la lignée pNRT2.1::GFP. Cette lignée est utilisée comme un outil présentant une très forte activité transcriptionnelle. Lorsque cette forte activité transcriptionnelle est introduite dans un fond clf-29, des mécanismes d'extinction génique dirigés par la méthylation
Conclusion générale

de l'ADN sont mis en place, suggérant qu'un seuil limite de transcrits a été franchi. De ce fait, la régulation exercée par H3K27me3 serait indépendante des variations en N et aurait plutôt une fonction de contrôle du niveau de transcrits produits, potentiellement en contrôlant le nombre de copies qui sont exprimées. Selon cette hypothèse, PRC2 exercerait un rôle canonique (forte répression d’un certain nombre de copies dans une cellule polyploïde), mais à l’échelle de l’organe et/ou du tissu, la régulation qu’il exerce serait perçue comme une modulation de l’expression. Il serait intéressant de comprendre, si tel était le cas, comment ce contrôle sélectif de certaines copies d’une cellule polyploïde peut se mettre en place.

L’ensemble de ce travail a permis de mettre en lumière de nouvelles fonctions de la dynamique chromatinienne dans la modulation de gènes fortement exprimés (par H3K27me3) mais également dans la régulation de gènes majeurs pour la nutrition des plantes (H3K4me3 notamment). Il sera maintenant essentiel de prendre en compte différents aspects pour la suite de ce projet :

(i) Apporter un coté dynamique à l’étude de la régulation chromatinnienne de la nutrition et de gènes hyperactifs au travers l'étude du modèle de la carence. Ce modèle permettra également d'étudier plus finement le rôle de LHP1/CLF dans la mise en place du contact physique entre NRT2.1 et NRT2.2 et d’analyser l'importance de ce contact dans la régulation transcriptionnelle de NRT2.1 et/ou NRT2.2.

(ii) Intégrer la notion des multiples copies du génome dans les cellules du cortex et de l'épiderme pour comprendre le rôle de PRC2 et/ou de la chromatine dans la régulation de NRT2.1 et des gènes hyperactifs. Le tri des noyaux en fonction de leur ploïdie permettra, dans un premier temps, d'analyser si les noyaux ayant de nombreuses copies présentent un enrichissement en H3K27me3 plus important que les noyaux possédant seulement deux copies.

(iii) Étudier l’importance dans la nutrition d’autres complexes régulateurs, notamment activateurs, tel que des H3K27me3 déméthylases, des histones acétyltransférase/déacétylases et des H3K4 tri-méthyltransférase.
Tableau S4.1 (1/3) : Descriptif des 108 gènes non-induits sur HN dans un fond hni9-1 par rapport au sauvage.

Les gènes annotés en gras sont ceux qui ont servi de gènes modèles pour l’étude du rôle de HNI9.

<table>
<thead>
<tr>
<th>AGI</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT1G05200</td>
<td>ATGLR3.4, ATGLR3.4 (Arabidopsis thaliana glutamate receptor 3.4)</td>
</tr>
<tr>
<td>AT1G10090</td>
<td>Early-responsive to dehydration stress protein (ERD4) - ion transport</td>
</tr>
<tr>
<td>AT1G11970</td>
<td>Ubiquitin-like superfamily protein; CONTAINS InterPro DOMAIN/s: Ubiquitin (InterPro:IPR000626); BEST Arabidopsis thaliana protein match is: ubiquitin-related protein 3 (TAIR:AT1G11980.1)</td>
</tr>
<tr>
<td>AT1G12090</td>
<td>ELP, ELP (EXTENSIN-LIKE PROTEIN); lipid binding</td>
</tr>
<tr>
<td>AT1G12220</td>
<td>RPS5, RPS5 (RESISTANT TO P. SYRINGAE 5)</td>
</tr>
<tr>
<td>AT1G13930</td>
<td>Golgi organization, coumarin biosynthetic process, glycolytic process, hydrogen peroxide catabolic process, hyperosmotic response, positive regulation of flavonoid biosynthetic process, response to cadmium ion, response to cytokinin, response to salt stress, response to temperature stimulus, response to wounding, water transport - Knockout mutants are hypersensitive to salt stress.</td>
</tr>
<tr>
<td>AT1G14240</td>
<td>hydrolyse, nucleoside phosphatase family protein / GDA1/CD39 family protein, unknown protein</td>
</tr>
<tr>
<td>AT1G14345</td>
<td>unknown protein - NAD(P)-linked oxidoreductase superfamily protein; FUNCTIONS IN: oxidoreductase activity</td>
</tr>
<tr>
<td>AT1G15170</td>
<td>MATE efflux family protein</td>
</tr>
<tr>
<td>AT1G18870</td>
<td>IC52, IC52; isochorismate synthase</td>
</tr>
<tr>
<td>AT1G19690</td>
<td>unknown protein - BEST Arabidopsis thaliana protein match is: transmembrane receptors (TAIR:AT2G32140.1)</td>
</tr>
<tr>
<td>AT1G20620</td>
<td>CAT3, CAT3 (CATALEase 3); catalase</td>
</tr>
<tr>
<td>AT1G21110</td>
<td>IGMT1, INDOLE GLUCOSINOLATE O-METHYLTRANSFERASE 1</td>
</tr>
<tr>
<td>AT1G21113</td>
<td>IGMT4, INDOLE GLUCOSINOLATE O-METHYLTRANSFERASE 4</td>
</tr>
<tr>
<td>AT1G23030</td>
<td>armadillo/beta-catenin repeat family protein / U-box domain-containing protein</td>
</tr>
<tr>
<td>AT1G31710</td>
<td>copper amine oxidase, putative</td>
</tr>
<tr>
<td>AT1G31717</td>
<td>copper amine oxidase, putative</td>
</tr>
<tr>
<td>AT1G51840</td>
<td>protein kinase-related</td>
</tr>
<tr>
<td>AT1G52410</td>
<td>TSA1, TSA1 (TSK-ASSOCIATING PROTEIN 1), TSA1 (TSK-ASSOCIATING PROTEIN 1); calcium ion binding / protein binding</td>
</tr>
<tr>
<td>AT1G52820</td>
<td>2-oxoglutarate-dependent dioxygenase, putative</td>
</tr>
<tr>
<td>AT1G54970</td>
<td>ATPRP1, ATPRP1 (PROLINE-RICH PROTEIN 1)</td>
</tr>
<tr>
<td>AT1G6470</td>
<td>GASA6</td>
</tr>
<tr>
<td>AT1G75280</td>
<td>isoflavone reductase, putative</td>
</tr>
<tr>
<td>AT1G75780</td>
<td>TUB1, TUB1 (tubulin beta-1 chain); structural molecule</td>
</tr>
<tr>
<td>AT1G76790</td>
<td>IGMT5, INDOLE GLUCOSINOLATE O-METHYLTRANSFERASE 5</td>
</tr>
<tr>
<td>AT1G80520</td>
<td>Sterile alpha motif (SAM) domain-containing protein</td>
</tr>
<tr>
<td>AT2G03470</td>
<td>myb family transcription factor / ELM2 domain-containing protein</td>
</tr>
<tr>
<td>AT2G16005</td>
<td>MD-2-related lipid recognition domain-containing protein / ML domain-containing protein</td>
</tr>
</tbody>
</table>

Annexes

Tableau S4.1 (2/3) : Descriptif des 108 gènes non-induits sur HN dans un fond hni9-1 par rapport au sauvage.

Les gènes annotés en gras sont ceux qui ont servi de gènes modèles pour l’étude du rôle de HN19.

<table>
<thead>
<tr>
<th>AGI</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT2G16750</td>
<td>protein kinase family protein</td>
</tr>
<tr>
<td>AT2G23910</td>
<td>cinnamoyl-CoA reductase-related</td>
</tr>
<tr>
<td>AT2G24160</td>
<td>pseudogene, leucine rich repeat protein family, contains leucine rich-repeat domains</td>
</tr>
<tr>
<td>AT2G29630</td>
<td>Encodes ThiC involved in thiamine biosynthesis. Translation of ThiC is regulated by a riboswitch in the 3’ of untranslated region of the messenger RNA., thiamine biosynthesis family protein / thiC family protein</td>
</tr>
<tr>
<td>AT2G33830</td>
<td>dormancy/auxin associated family protein ATDRM2, DORMANCY ASSOCIATED GENE 2, DRM2</td>
</tr>
<tr>
<td>AT2G33850</td>
<td>unknown protein</td>
</tr>
<tr>
<td>AT2G34490</td>
<td>CYP710A2, CYP710A2 (cytochrome P450, family 710, subfamily A, polypeptide 2); C-22 sterol desaturase/ oxygen binding</td>
</tr>
<tr>
<td>AT2G36690</td>
<td>2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein</td>
</tr>
<tr>
<td>AT2G36870</td>
<td>ATXTH32, XTH32, XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE 32</td>
</tr>
<tr>
<td>AT2G37130</td>
<td>Peroxidase superfamily protein</td>
</tr>
<tr>
<td>AT2G39040</td>
<td>CYP710A2, CYP710A2 (cytochrome P450, family 710, subfamily A, polypeptide 2); C-22 sterol desaturase/ oxygen binding</td>
</tr>
<tr>
<td>AT2G41970</td>
<td>Protein kinase superfamily protein</td>
</tr>
<tr>
<td>AT2G42250</td>
<td>"CYTOCHROME P450, FAMILY 712, SUBFAMILY A, POLYPEPTIDE 1", CYP712A1</td>
</tr>
<tr>
<td>AT2G43590</td>
<td>Chitinase family protein</td>
</tr>
<tr>
<td>AT2G45920</td>
<td>U-box domain-containing protein</td>
</tr>
<tr>
<td>AT2G47600</td>
<td>ATMXH, ATMXH1, MAGNESIUM/PROTON EXCHANGER, MAGNESIUM/PROTON EXCHANGER 1, MHX, MHX1</td>
</tr>
<tr>
<td>AT3G09220</td>
<td>LAC7, LACCASE 7</td>
</tr>
<tr>
<td>AT3G12955</td>
<td>SAUR74, SMALL AUXIN UPREGULATED RNA 74</td>
</tr>
<tr>
<td>AT3G13950</td>
<td>unknown protein</td>
</tr>
<tr>
<td>AT3G14990</td>
<td>4-methyl-5(β-hydroxyethyl)-thiazole monophosphate biosynthesis protein, putative, catalytic</td>
</tr>
<tr>
<td>AT3G15090</td>
<td>oxidoreductase, zinc-binding dehydrogenase family protein</td>
</tr>
<tr>
<td>AT3G16240</td>
<td>AQP1, ATTP2;1, DELTA TONOPLAST INTEGRAL PROTEIN, DELTA-TIP, DELTA-TIP1, TIP2;1</td>
</tr>
<tr>
<td>AT3G16470</td>
<td>JACALIN-RELATED LECTIN 35, JAL35, JASMONATE RESPONSIVE 1, JR1</td>
</tr>
<tr>
<td>AT3G21560</td>
<td>BRIGHT TRICHOMES 1, BRT1, UDP-GLUCOSYL TRANSFERASE 84A2, UGT84A2</td>
</tr>
<tr>
<td>AT3G23400</td>
<td>FIB4, FIBRILLIN 4</td>
</tr>
<tr>
<td>AT3G27200</td>
<td>Cupredoxin superfamily protein</td>
</tr>
<tr>
<td>AT3G29780</td>
<td>RALF-LIKE 27, RALFL2</td>
</tr>
<tr>
<td>AT3G30155</td>
<td>Encodes a putative cysteine proteinase. Mutants exhibit shorter root hairs under phosphate-deficient conditions.</td>
</tr>
<tr>
<td>AT3G48350</td>
<td>CEP3, CYSTEINE ENDOPEPTIDASE 3</td>
</tr>
<tr>
<td>AT3G49780</td>
<td>ATPSK3 (FORMER SYMBOL), ATPSK4, PHYTOSULFOKINE 4 PRECURSOR, PSK4</td>
</tr>
<tr>
<td>AT3G60190</td>
<td>ADL1E, ADL4, ADL2P, ARABIDOPSIS DYNAMIN-LIKE 4, DL1E, DRP1E, DYNAMIN-LIKE 1E, DYNAMIN-LIKE PROTEIN 2, DYNAMIN-RELATED PROTEIN 1E, EDR3, ENHANCED DISEASE RESISTANCE 3</td>
</tr>
<tr>
<td>AT3G60280</td>
<td>UCC3, UCLACYANIN 3</td>
</tr>
<tr>
<td>AT3G62680</td>
<td>ARABIDOPSIS THALIANA PROLINE-RICH PROTEIN 3, ATPRP3, PROLINE-RICH PROTEIN 3, PRP3</td>
</tr>
<tr>
<td>AT4G00780</td>
<td>TRAF-like family protein</td>
</tr>
<tr>
<td>AT4G03330</td>
<td>ATSY1P23, SYNTAXIN OF PLANTS 123, SYP123</td>
</tr>
</tbody>
</table>

Tableau S4.1 (3/3) : Descriptif des 108 gènes non-induits sur HN dans un fond hni9-1 par rapport au sauvage.

Les gènes annotés en gras sont ceux qui ont servi de gènes modèles pour l’étude du rôle de HNI9.

<table>
<thead>
<tr>
<th>AGI</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT4G11360</td>
<td>RHA1B, RING-H2 FINGER A1B</td>
</tr>
<tr>
<td>AT4G13420</td>
<td>ARABIDOPSIS THALIANA HIGH AFFINITY K+ TRANSPORTER 5, ATHAK5, HAK5, HIGH AFFINITY K+ TRANSPORTER 5</td>
</tr>
<tr>
<td>AT4G14060</td>
<td>Polyketide cyclase/dehydrase and lipid transport superfamily protein</td>
</tr>
<tr>
<td>AT4G15480</td>
<td>UGT84A1</td>
</tr>
<tr>
<td>AT4G16260</td>
<td>Encodes a putative beta-1,3-endoglucanase that interacts with the 30C02 cyst nematode effector. May play a role in host defense.</td>
</tr>
<tr>
<td>AT4G17340</td>
<td>DELTA-TIP2, TIP2;2, TONOPLAST INTRINSIC PROTEIN 2;2</td>
</tr>
<tr>
<td>AT4G20320</td>
<td>CTP synthase family protein</td>
</tr>
<tr>
<td>AT4G22610</td>
<td>Bi-functional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily protein</td>
</tr>
<tr>
<td>AT4G23496</td>
<td>SP1LS, SPIRAL1-LIKE</td>
</tr>
<tr>
<td>AT4G23670</td>
<td>Polyketide cyclase/dehydrase and lipid transport superfamily protein</td>
</tr>
<tr>
<td>AT4G23680</td>
<td>Polyketide cyclase/dehydrase and lipid transport superfamily protein</td>
</tr>
<tr>
<td>AT4G23700</td>
<td>Polyketide cyclase/dehydrase and lipid transport superfamily protein</td>
</tr>
<tr>
<td>AT4G23870</td>
<td>Polyketide cyclase/dehydrase and lipid transport superfamily protein</td>
</tr>
<tr>
<td>AT4G23980</td>
<td>Polyketide cyclase/dehydrase and lipid transport superfamily protein</td>
</tr>
<tr>
<td>AT4G27230</td>
<td>PHYTOENE SYNTHASE, PSY</td>
</tr>
<tr>
<td>AT5G19860</td>
<td>Protein of unknown function, DUF538</td>
</tr>
<tr>
<td>AT5G19870</td>
<td>Family of unknown function (DUF716)</td>
</tr>
<tr>
<td>AT5G24660</td>
<td>LSU2, RESPONSE TO LOW SULFUR 2</td>
</tr>
<tr>
<td>AT5G30440</td>
<td>transposable_element_gene</td>
</tr>
<tr>
<td>AT5G42600</td>
<td>MARNERAL SYNTHASE 1, MRN1</td>
</tr>
<tr>
<td>AT5G42900</td>
<td>COLD REGULATED GENE 27, COR27</td>
</tr>
<tr>
<td>AT5G47000</td>
<td>Peroxidase superfamily protein</td>
</tr>
<tr>
<td>AT5G47450</td>
<td>ARABIDOPSIS THALIANA TONOPLAST INTRINSIC PROTEIN 2;3, ATTIP2;3, DELTA-TIP3, DELTA-TONOPLAST INTRINSIC PROTEIN 3, TIP2;3, TONOPLAST INTRINSIC PROTEIN 2;3</td>
</tr>
<tr>
<td>AT5G48000</td>
<td>"CYTOCHROME P450, FAMILY 708, SUBFAMILY A, POLYPEPTIDE 2", CYP708A2, THAH, THAH1, THALIANOL HYDROXYLASE, THALIANOL HYDROXYLASE 1</td>
</tr>
<tr>
<td>AT5G48485</td>
<td>DEFFECTIVE IN INDUCED RESISTANCE 1, DRI</td>
</tr>
<tr>
<td>AT5G48880</td>
<td>3-KETO-ACYL-COENZYM E A THIOLASE 5, KAT5, PEROXISOMAL 3-KETO-ACYL-COA THIOLASE 2, PEROXISOMAL-3-KETO-ACYL-COA THIOLASE 1, KPT1, KPT2</td>
</tr>
<tr>
<td>AT5G50760</td>
<td>SAUR55, SMALL AUXIN UPRGULATED RNA 35</td>
</tr>
<tr>
<td>AT5G54510</td>
<td>DFL1, DWARF IN LIGHT 1, GH3.6, RETCHEN HAGEN3.6</td>
</tr>
<tr>
<td>AT5G56870</td>
<td>BETA-GALACTOSIDASE 4, BGL4</td>
</tr>
<tr>
<td>AT5G57220</td>
<td>"CYTOCHROME P450, FAMILY 81, SUBFAMILY F, POLYPEPTIDE 2", CYP8F2</td>
</tr>
<tr>
<td>AT5G57630</td>
<td>CBL-INTERACTING PROTEIN KINASE 21, CIPK21, SNF1-RELATED PROTEIN KINASE 3.4</td>
</tr>
<tr>
<td>AT5G60100</td>
<td>PRR3, PSEUDO-RESPONSE REGULATOR 3</td>
</tr>
<tr>
<td>AT5G62165</td>
<td>AGAMOUS-LIKE 42, AGL42, FOREVER YOUNG FLOWER, FYF</td>
</tr>
</tbody>
</table>

Annexes

Annexes

Tableau S4.2 : Descriptif des catégories fonctionnelles, au sein des 108 gènes induits sur HN dans un fond sauvage de manière dépendante de HNI9, obtenues par l’analyse Cytoscape (Bingo).
Cette analyse a été réalisée sur 96 des 108 gènes de la liste (X) car 12 de ces gènes ne présentent pas d’annotation sur TAIR (N). x : nombre de gènes parmi les 108 qui appartiennent à la catégorie fonctionnelle ; n : nombre de gènes parmi N qui appartiennent à la catégorie.

<table>
<thead>
<tr>
<th>GO-ID</th>
<th>p-value</th>
<th>cor p-value</th>
<th>x</th>
<th>n</th>
<th>X</th>
<th>N</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3824</td>
<td>1.220E-5</td>
<td>6.5259E-4</td>
<td>50</td>
<td>753</td>
<td>96</td>
<td>24443</td>
<td>catalytic activity</td>
</tr>
<tr>
<td>16491</td>
<td>1.4615E-5</td>
<td>6.5259E-4</td>
<td>17</td>
<td>1326</td>
<td>96</td>
<td>24443</td>
<td>oxidoreductase activity</td>
</tr>
<tr>
<td>51739</td>
<td>1.5265E-5</td>
<td>6.5259E-4</td>
<td>2</td>
<td>2</td>
<td>96</td>
<td>24443</td>
<td>ammonia transmembrane transporter activity</td>
</tr>
<tr>
<td>15200</td>
<td>1.5265E-5</td>
<td>6.5259E-4</td>
<td>2</td>
<td>2</td>
<td>96</td>
<td>24443</td>
<td>methylammonium transmembrane transporter activity</td>
</tr>
<tr>
<td>16684</td>
<td>5.4337E-5</td>
<td>1.5486E-3</td>
<td>5</td>
<td>103</td>
<td>96</td>
<td>24443</td>
<td>oxidoreductase activity, acting on peroxide as acceptor</td>
</tr>
<tr>
<td>4601</td>
<td>5.4337E-5</td>
<td>1.5486E-3</td>
<td>5</td>
<td>103</td>
<td>96</td>
<td>24443</td>
<td>peroxidase activity</td>
</tr>
<tr>
<td>50284</td>
<td>9.1112E-5</td>
<td>2.2260E-3</td>
<td>2</td>
<td>4</td>
<td>96</td>
<td>24443</td>
<td>sinapate 1-glucosyltransferase activity</td>
</tr>
<tr>
<td>16209</td>
<td>1.6346E-4</td>
<td>3.4940E-3</td>
<td>5</td>
<td>130</td>
<td>96</td>
<td>24443</td>
<td>antioxidant activity</td>
</tr>
<tr>
<td>15250</td>
<td>3.2160E-4</td>
<td>5.4994E-3</td>
<td>3</td>
<td>34</td>
<td>96</td>
<td>24443</td>
<td>water channel activity</td>
</tr>
<tr>
<td>5372</td>
<td>3.2160E-4</td>
<td>5.4994E-3</td>
<td>3</td>
<td>34</td>
<td>96</td>
<td>24443</td>
<td>water transmembrane transporter activity</td>
</tr>
<tr>
<td>20037</td>
<td>1.0050E-3</td>
<td>1.5347E-2</td>
<td>6</td>
<td>290</td>
<td>96</td>
<td>24443</td>
<td>heme binding</td>
</tr>
<tr>
<td>22838</td>
<td>1.2178E-3</td>
<td>1.5347E-2</td>
<td>4</td>
<td>118</td>
<td>96</td>
<td>24443</td>
<td>substrate-specific channel activity</td>
</tr>
<tr>
<td>22803</td>
<td>1.2564E-3</td>
<td>1.5347E-2</td>
<td>4</td>
<td>119</td>
<td>96</td>
<td>24443</td>
<td>passive transmembrane transporter activity</td>
</tr>
<tr>
<td>15267</td>
<td>1.2564E-3</td>
<td>1.5347E-2</td>
<td>4</td>
<td>119</td>
<td>96</td>
<td>24443</td>
<td>channel activity</td>
</tr>
<tr>
<td>9055</td>
<td>1.4833E-3</td>
<td>1.6121E-2</td>
<td>7</td>
<td>427</td>
<td>96</td>
<td>24443</td>
<td>electron carrier activity</td>
</tr>
<tr>
<td>46906</td>
<td>1.5084E-3</td>
<td>1.6121E-2</td>
<td>6</td>
<td>314</td>
<td>96</td>
<td>24443</td>
<td>tetrapyrrole binding</td>
</tr>
<tr>
<td>19825</td>
<td>1.8844E-3</td>
<td>1.8955E-2</td>
<td>5</td>
<td>223</td>
<td>96</td>
<td>24443</td>
<td>oxygen binding</td>
</tr>
<tr>
<td>5506</td>
<td>2.6727E-3</td>
<td>2.5391E-2</td>
<td>6</td>
<td>352</td>
<td>96</td>
<td>24443</td>
<td>iron ion binding</td>
</tr>
<tr>
<td>34074</td>
<td>3.9275E-3</td>
<td>2.7983E-2</td>
<td>1</td>
<td>1</td>
<td>96</td>
<td>24443</td>
<td>manerel synthase activity</td>
</tr>
<tr>
<td>22820</td>
<td>3.9275E-3</td>
<td>2.7983E-2</td>
<td>1</td>
<td>1</td>
<td>96</td>
<td>24443</td>
<td>potassium ion symporter activity</td>
</tr>
<tr>
<td>46905</td>
<td>3.9275E-3</td>
<td>2.7983E-2</td>
<td>1</td>
<td>1</td>
<td>96</td>
<td>24443</td>
<td>phytoene synthase activity</td>
</tr>
<tr>
<td>16767</td>
<td>3.9275E-3</td>
<td>2.7983E-2</td>
<td>1</td>
<td>1</td>
<td>96</td>
<td>24443</td>
<td>geranylgeranyl-diphosphate geranylgeranyltransferase activity</td>
</tr>
<tr>
<td>80014</td>
<td>3.9275E-3</td>
<td>2.7983E-2</td>
<td>1</td>
<td>1</td>
<td>96</td>
<td>24443</td>
<td>thalianol hydroxylase activity</td>
</tr>
<tr>
<td>9674</td>
<td>3.9275E-3</td>
<td>2.7983E-2</td>
<td>1</td>
<td>1</td>
<td>96</td>
<td>24443</td>
<td>potassium:sodium symporter activity</td>
</tr>
<tr>
<td>8171</td>
<td>6.5911E-3</td>
<td>4.5083E-2</td>
<td>2</td>
<td>31</td>
<td>96</td>
<td>24443</td>
<td>O-methyltransferase activity</td>
</tr>
<tr>
<td>80041</td>
<td>7.8397E-3</td>
<td>4.6532E-2</td>
<td>1</td>
<td>2</td>
<td>96</td>
<td>24443</td>
<td>ADP-ribose pyrophosphohydrolase activity</td>
</tr>
<tr>
<td>8909</td>
<td>7.8397E-3</td>
<td>4.6532E-2</td>
<td>1</td>
<td>2</td>
<td>96</td>
<td>24443</td>
<td>isochorismate synthase activity</td>
</tr>
<tr>
<td>249</td>
<td>7.8397E-3</td>
<td>4.6532E-2</td>
<td>1</td>
<td>2</td>
<td>96</td>
<td>24443</td>
<td>C-22 sterol desaturase activity</td>
</tr>
<tr>
<td>16866</td>
<td>7.8913E-3</td>
<td>4.6532E-2</td>
<td>2</td>
<td>34</td>
<td>96</td>
<td>24443</td>
<td>intramolecular transferase activity</td>
</tr>
</tbody>
</table>
Root hydrotropism is controlled via a cortex-specific growth mechanism. Nat. Plants, 3 17057.

Annexes

<table>
<thead>
<tr>
<th>Catégorie fonctionnelle</th>
<th>Gènes appartenant à cette catégorie</th>
</tr>
</thead>
<tbody>
<tr>
<td>catalytic activity</td>
<td>AT1G60470</td>
</tr>
<tr>
<td>oxidoreductase activity</td>
<td>AT5G47000</td>
</tr>
<tr>
<td>ammonia transmembrane transporter activity</td>
<td>AT3G16240</td>
</tr>
<tr>
<td>methylammonium transmembrane transporter activity</td>
<td>AT3G16240</td>
</tr>
<tr>
<td>oxidoreductase activity, acting on peroxide as acceptor</td>
<td>AT2G41480</td>
</tr>
<tr>
<td>peroxidase activity</td>
<td>AT2G41480</td>
</tr>
<tr>
<td>sinapate 1-glucosyltransferase activity</td>
<td>AT4G15480</td>
</tr>
<tr>
<td>antioxidant activity</td>
<td>AT2G41480</td>
</tr>
<tr>
<td>water channel activity</td>
<td>AT3G16240</td>
</tr>
<tr>
<td>water transmembrane transporter activity</td>
<td>AT3G16240</td>
</tr>
<tr>
<td>heme binding</td>
<td>AT5G57220</td>
</tr>
<tr>
<td>substrate-specific channel activity</td>
<td>AT3G16240</td>
</tr>
<tr>
<td>passive transmembrane transporter activity</td>
<td>AT3G16240</td>
</tr>
<tr>
<td>channel activity</td>
<td>AT3G16240</td>
</tr>
<tr>
<td>electron carrier activity</td>
<td>AT5G57220</td>
</tr>
<tr>
<td>tetrapyrole binding</td>
<td>AT5G57220</td>
</tr>
<tr>
<td>oxygen binding</td>
<td>AT5G57220</td>
</tr>
<tr>
<td>iron ion binding</td>
<td>AT5G57220</td>
</tr>
<tr>
<td>manneral synthase activity</td>
<td>AT5G42600</td>
</tr>
<tr>
<td>potassium ion symporter activity</td>
<td>AT4G13420</td>
</tr>
<tr>
<td>phytoene synthase activity</td>
<td>AT5G17230</td>
</tr>
<tr>
<td>geranylgeranyl-diphosphate geranylgeranyltransferase activity</td>
<td>AT5G17230</td>
</tr>
<tr>
<td>thalianol hydroxylase activity</td>
<td>AT5G48000</td>
</tr>
<tr>
<td>potassium:sodium symporter activity</td>
<td>AT4G13420</td>
</tr>
<tr>
<td>O-methyltransferase activity</td>
<td>AT1G21100</td>
</tr>
<tr>
<td>ADP-ribose pyrophosphohydrolase activity</td>
<td>AT2G29630</td>
</tr>
<tr>
<td>isochorismate synthase activity</td>
<td>AT1G18870</td>
</tr>
<tr>
<td>C-22 sterol desaturase activity</td>
<td>AT2G34490</td>
</tr>
<tr>
<td>intramolecular transferase activity</td>
<td>AT1G18870</td>
</tr>
</tbody>
</table>

Tableau S4.3 : Répartition des 96 gènes (sur les 108 gènes induits sur HN dans un fond sauvage de manière dépendante de HN19) au sein des catégories fonctionnelles obtenues par l’analyse Cytoscape (Bingo). Cette analyse a été réalisée sur 96 des 108 gènes de la liste car 12 de ces gènes ne présentent pas d’annotation sur TAIR.

Genome Is Organized in a Reduced Number of Linear Motifs of Chromatin States. Plant Cell, 26 (6) 2351-2366.

Résumé :
Le nitrate est une source essentielle d’azote pour les plantes. Les transporteurs racinaires qui prélevent le nitrate du sol sont soumis à des régulations transcriptionnelles qui modulent les capacités de prélèvement du nitrate. NRT2.1, transporteur de nitrate essentiel et majoritaire au niveau racinaire, est très fortement exprimé en condition limitante en nitrate, et réprimé sous forte nutrition azotée. Cette répression est corrélée avec un enrichissement en marque chromatinienne H3K27me3 qui semble dépendant du régulateur chromatinien HNI9. H3K27me3 est une marque chromatinienne répressive pour l’expression des gènes, catalysée par le complexe PRC2, et est impliquée dans la régulation du développement. Cependant, le rôle de H3K27me3 et de PRC2 dans l’adaptation à des environnements nutritionnels fluctuants reste à étudier. Le projet qui m’a été confié était d’étudier, chez Arabidopsis, la contribution de H3K27me3 dans la régulation du gène NRT2.1 en réponse à l’azote. Nous démontrons que H3K27me3 n’est pas le déterminant majeur de la répression de NRT2.1 par le fort statut azoté, mais que H3K27me3 régule directement NRT2.1, dans un contexte où NRT2.1 est fortement exprimé, afin de tempérer son expression. Nous montrons également que l’absence de limitation de l’hyperactivité du promoteur NRT2.1 peut in fine conduire à un état totalement réprimé par méthylisation de l’ADN. Ce travail révèle une fonction insoupçonnée de PRC2 en tant que modulateur et protecteur de l’expression de gènes fortement exprimés. Nous montrons aussi que HNI9 aurait pour fonction d’activer des gènes de réponse à un stress oxydant mis en place lors d’une forte nutrition, et que PRC2 et NRT2.1 ont des rôles indépendants dans la régulation de l’architecture racinaire. L’ensemble de ce travail a permis de mettre en lumière de nouvelles fonctions de la dynamique chromatinienne dans la régulation de gènes majeurs pour la nutrition des plantes.

Mots clés : Arabidopsis, chromatine, nutrition, adaptation, environnement

Abstract:
Nitrate is an essential source of nitrogen for plants. Root nitrate transporters are subjected to transcriptional regulations that allow a fine control of nitrate uptake capacities. NRT2.1, an essential and major nitrate transporter in roots, is strongly expressed under limiting nitrate condition, and repressed under high nitrogen nutrition. This repression is correlated with an enrichment in chromatin mark H3K27me3, which seems to be dependent on the chromatin regulator HNI9. H3K27me3 is a chromatin mark repressive for gene expression, catalysed by the PRC2 complex, and involved in developmental regulation. However, the role of H3K27me3 and PRC2 in the adaptation to fluctuating nitrogen environments remains to be understood. My project was to study, in Arabidopsis, the contribution of H3K27me3 in the regulation of NRT2.1 gene in response to nitrogen provision. We demonstrate that H3K27me3 is not the major determinant of NRT2.1 repression by high nitrogen status, but that H3K27me3 directly regulates NRT2.1, in a context where NRT2.1 is strongly expressed, to temper its expression. We also show that the absence of limitation of NRT2.1 promoter hyperactivity can lead to a switch to full silencing by DNA methylation. This reveals an unexpected function of PRC2 as a safeguard for the expression of highly expressed genes. We also show that HNI9 is involved in the activation of oxidative stress responsive genes, which occurs under N-rich nutrition, and that PRC2 and NRT2.1 play independent roles in the regulation of root architecture. This work has highlighted new functions of chromatin dynamic in the regulation of genes with major significance for plant nutrition.

Key words: Arabidopsis, nutrition, chromatin, adaptation, environment