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Naturally occurring variation among wild
relatives of cultivated crops is an under-
exploited resource in plant breeding. Here, 
I argue that exotic libraries, which consist of
marker-defined genomic regions taken from
wild species and introgressed onto the
background of elite crop lines, provide plant
breeders with an important opportunity to
improve the agricultural performance of
modern crop varieties. These libraries can
also act as reagents for the discovery and
characterization of genes that underlie traits
of agricultural value.

Every plant now under cultivation was once
wild. Plant evolution under domestication
has led to increased productivity, but, at the
same time, domestication has narrowed the
genetic basis of crop species. The challenges
that face modern plant breeders are to
develop higher yielding, nutritious and
environmentally friendly varieties that
improve our quality of life without harness-
ing additional natural habitats to agricultur-
al production. This article asserts that it is
time to return to the wild ancestors of crop
plants to use them as a source of the genetic
variation that has been lost during domesti-
cation. Exotic germplasm resources, which
include wild species and LANDRACES, often
carry many agriculturally undesirable alle-
les. However, genetic studies can identify the
agriculturally valuable traits of wild species,
and INTROGRESSION BREEDING can transfer these
traits to commercial varieties.

To enhance the rate of progress of intro-
gression breeding, I believe that we should
invest in the development of a genetic infra-
structure of ‘exotic libraries’. Each line in this
library would contain a marker-defined chro-
mosomal segment from an agriculturally
unadapted source crossed onto a background
of an ELITE VARIETY; each exotic genome would
be represented in its entirety in a set of intro-
gression lines. Once such permanent exotic
resources, in the form of seed banks, have
been generated from a diverse selection of
ACCESSIONS, they can be screened for multiple
phenotypes to identify alleles of economic
importance. In this article, I present the ratio-
nale for developing exotic libraries from the
perspective of their practical application to
plant breeding.

Art and science of plant breeding
Plant breeding is the art and science of the
genetic improvement of crops to produce
new varieties that have increased productiv-
ity and quality (FIG. 1). Genetic variation is
the engine that propels breeding to meet
future challenges. We select, from the avail-
able pool of genetic variation, individual
plants that contain desirable traits, which
are then crossed to create a new pool of
variation that is enriched for the selected
phenotypes. The variation at our disposal
exists in modern varieties, in exotic
germplasm and in genetically modified
(GM) plants. The success of a breeder
depends on his or her ability to select a few

of the data by participating in temporary,
large genome sequencing networks. These
would complement the principal dedicated
sequencing centres, which will have to under-
take the vast bulk of the work involved in the
large eukaryotic genomes. The effective
application of the network approach in
developing, as well as developed, nations
shows that the model is widely (and perhaps
universally) applicable, therefore significantly
extending the opportunity to be involved in
practical genomics. The available data indi-
cate that the use of sequencing networks is
accelerating; this in itself could represent an
important alteration not only in the content
of molecular biology, but also in the way that
it is executed.
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Online links

FURTHER INFORMATION
TIGR Comprehensive Microbial Resource:
http://www.tigr.org/tigr-scripts/CMR2/CMRHomePage.spl

Dedicated sequencing centres
Genoscope: http://www.genoscope.cns.fr/
Kasuza DNA Research Institute:
http://www.kazusa.or.jp/en/
TIGR: http://www.tigr.org/
The Sanger Centre: http://www.sanger.ac.uk/

Sequencing consortia
Brazilian genome virtual institute of genomic research:
http://www.brgene.lncc.br/
ONSA: http://www.watson.fapesp.br/genoma3.htm
Access to this interactive links box is free online.
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Wild species in breeding
The potential of wild species as a source of
genetic variation to bring about crop
improvement was recognized early in the
twentieth century7. However, the use of
these exotic genetic resources in breeding
programmes was a time-consuming and
laborious process that often ended in fail-
ure. The transfer of traits from poorly
adapted germplasm that carries many unde-
sirable genes into elite lines required many
backcrosses, an efficient selection procedure
and much luck. The problems that stood,
and still stand, in the way of progress when
crossing wild and domesticated species
include: cross incompatibility between the
wild species and the cultivated crop;
F

1
hybrid sterility; infertility of the segregat-

ing generations; reduced recombination
between the chromosomes of the two
species; and genes of negative effect being
tightly linked to the trait of interest (so-
called ‘linkage drag’). Despite these difficul-
ties, when we evaluate the contribution that
wild introgression breeding has made to the
development of modern-day varieties, it is
evident that this approach has had an
important effect on the development of
some crop species, particularly with respect
to developing new varieties with improved
disease resistance. Furthermore, although
exotic germplasm has been exploited as a
source of monogenic traits, little has been
done with respect to traits that are influ-
enced by QUANTITATIVE TRAIT LOCI (QTL).
Traits such as yield, quality and stress
response show complex inheritance patterns
that result from the segregation of numer-
ous interacting QTL, the expression of
which is modified by the environment.

In the following paragraphs, I highlight
some representative examples of the use of
seed bank collections of wild germplasm in
the breeding of agriculturally important
crops. This is not an exhaustive review of all
such cases, but is meant to provide some
insight into how the evolution, the history of
domestication, and the reproductive patterns
of certain crop species can inform us as to
how useful it might or might not be to exploit
exotic germplasm to improve the agricultural
perfomance of crop species.

Wheat. The history of wheat cultivation and
that of human civilization are closely allied.
Wheat breeders knew how to benefit from
phenotypes identified in wild introgressions
for disease resistance (they discovered close to
30 independent genes8), and have produced a
few of the rare examples of the agricultural
implementation of QTL, which were found in

evolution is responsible for the fact that
many crop plants contain only a small frac-
tion of the genetic variation that is present in
their wild relatives. Watermelon domestica-
tion is a good example of this. The wild
watermelon species harbour dominant
genes that are responsible for an extremely
bitter taste and white fruit flesh (FIG. 2). Early
farmers probably selected rare recessive
mutants with non-bitter attributes, as well as
red flesh, and all the watermelons we eat
today originate from this early selection.
This is supported by genetic evidence show-
ing that very little polymorphism exists at
molecular markers in the genome of the cul-
tivated watermelon, compared with the
amount of variation that is present in the
entire genus5.

Over the centuries, farmers have know-
ingly selected improved plant types in their
fields, which have arisen through recombi-
nation, naturally occurring mutations and
spontaneous outcrossing events with wild
relatives6. This slow breeding process led to
the development of landraces that are
adapted to local field conditions. With the
formulation of the Mendelian principles of
heredity, plant breeders made much more
rapid progress by making directed crosses
and by selecting for the desired combina-
tions of parental characteristics. The Green
Revolution developed high-yielding, short,
inbred varieties of wheat and rice for grow-
ing in tropical regions, which provided
LODGING tolerance under high fertilization
regimes, so increasing yield1. The develop-
ment of hybrids also had an important
impact on yield increases of maize and
revealed heterosis as a force in plant breed-
ing. These breeding efforts, although aimed
at fulfilling the demands of intensive agri-
culture, resulted in further erosion of the
genetic diversity of elite gene pools.
Furthermore, many landraces were lost as
farmers throughout the world shifted to
growing high-yielding varieties.

individual lines that have a superior pheno-
type and to discard others in a way that
allows large-scale testing efforts to be cen-
tred on a significantly improved gene pool.
It is important to note that although scien-
tific technologies can greatly assist in the
development of new varieties, the key com-
ponents in plant breeding are new ideas
combined with a strong element of intu-
ition. For example, in the 1960s, plant
breeders had the idea and the germplasm to
develop high-yielding dwarf varieties of
wheat in an agricultural advance that is
now known as the ‘Green Revolution’1.
Four decades later, plant research has
shown that the mutant phenotypes behind
the Green Revolution were caused by alter-
ations in genes that encode plant hormone
response modulators2. So, plant breeders
use biological phenomena, the scientific
basis of which is often unknown, such as
HETEROSIS, which is used to create hybrid
plants of improved quality.

Crop domestication
The breeders who made the first marked
advances in crop productivity worked
10,000 years ago in the Fertile Crescent of
the Middle East, and domesticated several
cereal and pulse crops3. Early breeders select-
ed out the rare mutations of the native flora
— such as recessive alleles for non-brittle
spike in barley — that prevented seed dis-
persal at maturity, so facilitating the harvest.
As a result, crop populations became depen-
dent on human intervention for their repro-
duction4. On the basis of archaeological and
genetic evidence, it seems that domestication
of most crop plants occurred in specific ‘cen-
tres of origin’ throughout the world, and has
generally involved only a few founding geno-
types. The ‘founder effect’ principle in crop

“Plant breeding is the art
and science of the genetic
improvement of crops to
produce new varieties …
Genetic variation is the
engine that propels
breeding to meet future
challenges.”

Genetic variation

Crosses

New variety for testing

Selection

Figure 1 | The central dogma of plant
breeding. The crop improvement cycle is
repeated for several generations until the breeder
is satisfied with the product and releases a new
variety for testing. In modern agriculture,
hundreds of varieties are released each year and
very few of these end up in the market place.
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contributed some fibre-quality traits to pre-
sent-day varieties23. As with soybean and
maize, transgenic cotton varieties with insect
and herbicide resistances are in widespread
cultivation.

Maize. The direct ancestor of maize, which
was domesticated in Central America, is
teosinte. It is estimated that five mutations
are responsible for the principal differences
between maize and teosinte24. A detailed
analysis of one of the mutations, teosinte
branched 1 (tb1), showed that both maize
and teosinte are highly polymorphic; howev-
er, the upstream region of tb1 in maize was
fixed through selection25. This indicates that
the mutation that was selected during the
process of domestication might alter tb1 reg-
ulation. Maize is unique because it is a natu-
rally outcrossing species that has undergone
more gene flow between cultivated and wild
species than have inbred varieties of the
aforementioned crop species. This has
resulted in a highly polymorphic genome in
which the value of exotic resources has yet to
be explored.

In summary, in contrast to the breeding of
wheat, tomato and rice, very few wild-species
introgressions are present in modern cultivat-
ed soybean and cotton varieties. However, the
fact that many breeding studies in the field
have indicated that exotic germplasm con-
tains useful genes that can be practically
exploited, has stimulated intensive genetic
research in a wide range of crop species26.
Even in maize, crosses to teosinte populations
produce progeny with traits of some agricul-
tural potential27.

Exotic libraries
The observation that wild genetic resources
can contribute to crop improvement, com-
bined with the alarming rate at which locally
adapted landraces are being lost and at
which natural habitats are being damaged,
has led to the establishment of large
germplasm collections in the form of seed
banks. The curators of these seed banks initi-
ate collection missions, maintain and char-
acterize accessions, and make them available
to the breeding community. The task facing
us is to devise the tools and concepts that
would allow us to rapidly use the genetic
potential that exists in these seed banks and
in wild species28,29. This could be achieved by
developing a permanent seed resource of
introgressed lines that would facilitate the
rapid screening of traits that are harboured
in wild genomes. This resource would over-
come a limitation of early wild germplasm
experiments — that they did not create a

exotic resources of wheat and which increased
the yield of cultivated wheat varieties. For
example, independent lines with the short
arm of chromosome 1B of wheat (Triticum
aestivum) replaced by the homologous arm
from rye (Secale cereale), produce higher
yields both in optimal and stress environ-
ments9. Yield improvements have also been
associated with an Agropyron elongatum (a
tall wheat grass) chromosomal segment that
carries a rust resistance gene10 (Lr19), and
with a high-grain protein QTL from Triticum
dicoccoides (wild emmer wheat) that
improves the quality of pasta made with flour
from wheat that carries the QTL11.

Tomato. New-world founder cultivars of
tomato were brought to Europe in the six-
teenth century and, after a history of garden-
ing and selection, were disseminated to many
areas of the world. This pattern of domestica-
tion is responsible for the very narrow genetic
basis of the cultivated crop and underlies the
early interest in incorporating traits from wild
species into modern varieties. At present,
commercial hybrids include different combi-
nations of 15 independently introgressed, dis-
ease-resistance genes that originate from vari-
ous wild resources12. These genes were
introduced through recurrent backcrossing,
and each resides on a small independent
chromosome segment from one of the
diverse donor species. This situation facilitat-
ed the development of polymorphic molecu-
lar markers that are being used to bring about

the PYRAMIDING of multiple traits on a single
genetic background. The tomato has also
been a pioneer crop in the directed introgres-
sion of wild chromosome segments that are
associated with QTL that improve fruit quali-
ty13. An important gene that was introduced
from the wild tomato species Lycopersicon
pennellii is B, which increases the level of
provitamin A (β-carotene) in the fruit by
more than 15-fold14.

Rice. Owing to the narrow genetic basis of
cultivated rice compared with its wild rela-
tives, more than 20,000 wild rice accessions
are stored in seed banks awaiting use15.
Traits for resistance to more than seven
pathogens have been introgressed into rice
germplasm from wild species, and some
introgressed lines are in commercial cultiva-
tion16. The mapping of yield-associated
QTL in interspecific populations has indi-
cated that wild rice species harbour genes of
interest for the improvement of rice cultiva-
tion in diverse environments17. The rice
genome will soon be completely sequenced,
and mapping information for traits of
breeding value will facilitate the develop-
ment of informative markers. These mark-
ers should help to eliminate linkage drag
and to isolate the genes that are responsible
for selected phenotypes18.

Soybean. Despite the extremely narrow basis
of modern soybean varieties, which trace
back to a handful of introductions from
China, there are no wild introgressions pre-
sent in the leading varieties cultivated in the
United States. However, interesting traits have
been identified in wild species that are held in
seed banks, including many disease-resistance
traits, and traits that confer tolerance to her-
bicides and salinity, and increased protein lev-
els. Some of this new variation is being intro-
duced through interspecific hybridization19,20.
It is possible that more-advanced soybean
varieties, into which exotic genes have been
introduced, are being developed in breeding
companies, which usually keep such informa-
tion confidential.

Cotton. Gossypium hirsutum, the most
important cotton species, was domesticated
within the last 5,000 years for its seed fibre.
Modern cotton varieties trace back to a few
Mexican lines, and their genetic diversity is
therefore very low21,22. Despite the fact that
many wild cotton species show agronomic
traits of potential interest, very little use has
been made of these exotic resources in breed-
ing. The only documented case is the use of
Gossypium barbadense, which apparently
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Figure 2 | Wild, hybrid and cultivated
watermelons. a | The bitter fruits of the wild
watermelon species Citrullus colocynthis, and 
b | the F1 hybrid progeny from crosses between 
C. colocynthis and the cultivated watermelon
(Citrullus lanatus, shown in c).
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An exotic library consists of a set of lines,
each of which carries a single, defined chro-
mosome segment that originates from a
donor species in an otherwise uniform elite
genetic background. The production of
such a congenic resource takes about ten
generations, and each line can be used
directly for breeding (BOX 1a). These lines
would provide an efficient tool for detecting
and mapping valuable agronomic traits for
several reasons. Because lines in the library
differ from the elite variety by only a single,

have resolved major and minor QTL in pop-
ulations that segregate for the entire genome
— in F

2
, backcross, recombinant inbred and

advanced backcross populations30. The prob-
lem with the genetic analysis of such popula-
tions, which result from crosses between
divergent genomes, is that the plants contain
a large proportion of wild-germplasm-
derived genes, which often results in partial
sterility. For this reason, these populations are
generally not suitable for the identification of
QTL that improve agricultural yield.

lasting germplasm resource. At present, if a
breeder wants to re-screen the progeny of a
particular interspecific cross that has been
explored in the past, for a new trait, he or she
has to start from the parents and then devel-
op the required generations — a time-
consuming undertaking.

With the development of informative
genetic markers and high-density marker
maps, it became possible to map not only
monogenic traits, but also QTL that affect
phenotypic variation. Numerous studies

Box 1 | Exotic and genetic modification breeding

The figures show breeding
schemes for generating and
screening an exotic genetic
library (a) and a transgenic
variety (b). In both schemes,
the elite variety chromosomes
are shown in red and the wild-
species introgressions or
transgene are shown in green.
Chromosomes of the
transformation variety are
shown in blue. The haploid
chromosome number of the
plant is six, and backcross
generations are shown for only
a pair of homologues.

In panel a, the wild species
(green) is crossed as a male
parent to a leading cultivated
variety (red), and the F

1
hybrid

is backcrossed to the elite
parent. Through recurrent
backcrosses, the average
proportion of the wild species
genome is reduced by 50% in
each generation. Chromosome
segments are traced through
crosses by genotyping the lines
with a genome-wide panel of
polymorphic markers that can
distinguish between parental
alleles. By the sixth backcross
generation, independent plants
can be isolated, each
heterozygous for a different
segment of the wild-species genome. Further self-pollination and selection leads to homozygosity at targeted introgressed segments. The resulting
exotic library, shown for the first two lines (IL1-1 and IL1-2), and for the last line (IL6-4), can be used in many screens for different agriculturally
important traits. Typically, three to five generations are required to identify wild-chromosome segments that improve the phenotype of the elite line
and to eliminate the negative traits that are caused by linkage drag. Once a particular exotic library has been developed, it can be used to rapidly
identify other traits of agricultural importance.

In the transgenic approach shown in panel b, intensive basic research is first required to identify new genes of potential benefit that have not been
patented. Once this is achieved, the gene is introduced onto a genetic background that is most suitable for transformation. Many plants are usually
evaluated for appropriate transgene expression levels in the tissue or organ of interest; selected transformants have to be tested over several
generations, as transgene silencing is a common problem for some crops and when using some types of gene-transfer technique. When the desired
expression level is obtained, the transformed line is backcrossed to an elite variety, and classical breeding is used to select the optimal background for
expression of the transgene and the associated phenotype. At this stage, the transgenic variety can be introduced and tested, although product-
marketing rights need to be applied for through the legal framework that regulates genetically engineered foods44,45. Once such a transformant has
been produced, it represents a variety that has been improved for only one trait.

a

Elite 
variety

IL1-1

Chromosomes 1

•
•
•

•
•
•

2 3 4 5 6

IL1-2

IL6-4

Transformed 
line

×

F1 hybridElite variety

Backcross
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Transgenic 
construct
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variety
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framework for this data organization could
be a genetic map that links all available bio-
logical data to a plant locus in the form of
chromosomal addresses. In plants, the use of
comparative mapping has shown unexpect-
edly high levels of synteny conservation in
grasses, Solanaceae (the family to which
tomatoes belong), crucifers and legume
crops38. Maps that show regions of conserved
synteny provide the means to compare phe-
notypes between species that cannot be
crossed, and to establish more comprehen-
sive and useful breeding databases for linking
exotic traits39. Naturally selected genetic vari-
ation provides the opportunity to explore
developmental networks that lead to higher
yields, some of which are controlled at the
gene-regulation level14,25.

defined chromosomal segment, the result-
ing plants will generally resemble the culti-
vated variety, which reduces the sterility
problems that occur in other breeding-pop-
ulation structures and allows progeny to be
assayed for yield-associated traits. The
EPISTATIC effects that are mediated by other
regions of the exotic genome are also
removed in introgressed lines because all the
phenotypic variation between a line in the
library and the nearly isogenic cultivated
variety is associated with the introgressed
segment. As a result, the ability to statistical-
ly identify small phenotypic effects is
increased. Because exotic libraries provide a
permanent resource with a characterized
genotype, they can be tested by several
research groups over time, and the pheno-
typic data that arise from these studies can
be collected and stored in curated databases
for general access. Furthermore, homozy-
gous lines in a library can be crossed to dif-
ferent tester lines, which allows the effects of
heterozygosity on the phenotype to be
explored, and which might lead to the iden-
tification of the chromosome segments that
are associated with heterosis. This resource
would also allow the phenotypic effects of
QTL to be mapped to smaller intervals,
through the recombination-mediated
reduction in size of QTL-carrying segments
into smaller, overlapping regions that could
be used to overcome the effects of linkage
drag. Finally, once introgressed chromo-
some segments have been sub-divided and
targeted, and QTL-containing lines have
been created, crosses between the lines can
be used to examine the phenotypic effects of
QTL interactions, to better understand the
nature of epistasis31.

One of the earliest uses of such a library
was that by Kuspira and Unrau32, who
analysed complex traits in common wheat
using whole-chromosome substitution lines.
In tomato, RFLP (restriction fragment length
polymorphism) markers have been used to
develop a full-coverage exotic library in the
form of introgression lines from a cross
between the wild green-fruited species 
L. pennellii and the cultivated tomato
Lycopersicon esculentum cv. M82 (REF. 33 and
FIG. 3). This population allowed us to identify
yield-associated QTL, and to examine their
epistatic and environmental interactions. It
also allowed us to eventually map, to high
resolution, a QTL to a region that spans a sin-
gle exon and an intron34. The development of
such populations35 was a difficult task in the
early days, when molecular markers were still
being developed. However, now, with the
availability of a range of marker-screening

technologies, such libraries can be developed
after ten generations of crossing and marker
analysis36.

Phenotyping is the rate-limiting step in
large-scale germplasm-enhancement pro-
grammes. However, library resources can be
rapidly phenotyped for a range of yield-
associated traits, including biotic and abiotic
stresses, as well as for the metabolic profiles
of hundreds of distinct compounds37. The
establishment of a user-friendly bioinformat-
ics management system is an essential com-
ponent of a programme that aims to handle
this type of complex biological data. The
challenge for the coming years is to develop
methodologies that will enable genomic
information to be associated with pheno-
types of interest for crop improvement. The
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IL1-2 IL3-2

IL4-4 IL6-3

IL10-1 IL12-1

Figure 3 | The Lycopersicon pennellii library. a | Green fruits of the wild species Lycopersicon pennellii,
b | the lycopene-rich red fruits of Lycopersicon esculentum, c | their F1 hybrid progeny, and d | six
introgression lines (ILs) that show their different fruit colour and carotenoid-content phenotypes. Each line
contains a single, marker-defined, wild-species-derived chromosome segment that harbours a gene that
affects fruit phenotype.
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and still dominate it, whereas Flavr Savr now
has little-to-no market share. This is because
the effect of rin on extending shelf life is
much more significant. This and other exam-
ples indicate that some of the variation that is
introduced into plants by transgenesis to
suppress certain gene products occurs natu-
rally or is induced in mutants, and can be
exploited in a cost-effective manner.
Considering the problems of consumer
acceptance of GM products, the take-home
message from the above cases is that we
should apply GM technologies in plant
breeding only in cases in which we have no
other classical genetic alternative.

Conclusion
Although animals and plants are highly evolu-
tionarily divergent, the strategies used to dis-
sect complex traits in them are often quite
similar. Owing to favourable biological attrib-
utes (such as short generation times and toler-
ance to inbreeding), new concepts in breeding
are often first proposed and tested in plants.
So, it is possible that the exotic library
approach might also be useful in breeding
agriculturally important animals by providing
the means to identify potentially orthologous
natural alleles across diverse genotypes.

This paper challenges the view that we are
living in a time of decreasing opportunities
for crop improvement through the use of
classical breeding approaches42,43. Exotic
libraries can make a wide array of previously
unexplored genetic variation rapidly available
to plant breeders and geneticists. Either in
combination with GM technology or without
it, exotic genetic libraries represent a dynamic
new resource that could substantially enrich
traditional crop improvement programmes
for many years to come.
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“Considering the problems
of consumer acceptance of
GM products … we should
apply GM technologies in
plant breeding only in cases
in which we have no other
classical genetic alternative.”

Glossary

ACCESSION

A sample of plant material that is collected at a 
specific location and maintained in a seed bank.

ELITE VARIETY

A variety that excels under conditions of modern
intensive agriculture.

EPISTASIS

An interaction between non-allelic genes, such that
one gene masks, interferes with or enhances the
expression of the other gene.

HETEROSIS

Hybrid vigour that leads to superior crop varieties.

INTROGRESSION BREEDING

The incorporation of selected traits from an 
unadapted exotic resource through a succession of
crosses (backcrosses) to a commercially elite variety.

LANDRACE

A locally adapted, cultivated variety that is selected 
by farmers.

LODGING

The collapse of top-heavy plants, particularly 
grain crops.

PYRAMIDING

The accumulation of several independent traits in the
same genotype through introgression breeding.

QUANTITATIVE TRAIT LOCI 

(QTL). Genetic loci that are identified through the
statistical analysis of complex traits (such as plant
height or body weight). Quantitative traits are 
typically affected by more than one gene and by 
the environment.
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