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ABSTRACT

Progresses of high-throughput phenotyping, genomic prediction and modelling may jointly
provide novel tools for breeding schemes and variety recommendation to farmers, in a
context of climate change and water scarcity. Integration of these approaches requires new
methods that tackle genotype x environment interactions and evaluate the comparative
advantages of varieties in contrasting environmental scenarios. In this thesis, we developed
and evaluated a new approach for predicting maize leaf area and grain number across multiple
environments, which combined genomic prediction models, novel phenomics methods and a
crop model (Sirius Maize). The latter can simulate, based on explicit physiological processes,
yield and other traits for multiple genotypes in a large range of environmental conditions,
provided that genotype-specific parameters are estimated for many hybrids and fed to the
model. We tested our approach by using three panels of maize hybrids: a diversity panel, a
panel that captures the genetic progress and a panel of recent hybrids, with 246, 56 and 86
hybrids, respectively. Genotype-specific traits were measured in indoor or field experiments,
related to plant phenology, architecture, leaf growth, responses to soil or air water status, and
maximum grain number. We first showed that traits measured indoor can translate to the
field, either directly or via the use of a model. Then, we showed that they can be successfully
estimated, for a larger number of hybrids, via genomic prediction. Finally, we converted these
traits into genotype-specific parameters, either via explicit equations or via scaling.
Appreciable prediction accuracies were achieved by the crop model for leaf area index and
grain number of studied hybrids, simulated in 9 and 21 experiments, respectively, with
contrasting environmental conditions. In the thesis, we discuss the relevance of each of these
steps, needed for integrating the knowledge from genetics, ecophysiological models and
phenomics. We also identify areas to improve the approach and its prediction accuracy and
for further applications in a plant breeding or variety recommendation context.

Key words: crop model Sirius Maize, genomic prediction, phenomics, genotype by
environment interaction, yield, leaf area index, climate change.






RESUME

Les progrés du phénotypage a haut débit, de la prédiction génomique et de la modélisation
fournissent potentiellement aux sélectionneurs et aux chercheurs de nouvelles méthodes
pour I'amélioration et pour I’évaluation variétale, dans un contexte de changement climatique
et de réduction des intrants. L'intégration de ces données dans I'objectif d’'une amélioration
durable des rendements nécessite le développement de nouvelles méthodes qui considérent
les interactions génotype x environnement et évaluent les avantages comparatifs de
nombreuses variétés dans des scénarios environnementaux contrastés. Dans cette théese,
nous avons développé et testé une nouvelle approche prédictive de I'indice foliaire et du
nombre de grains dans des scénarios environnementaux variés. Cette approche combine des
modeles de prédiction génomique, des méthodes phénomiques développées récemment et
un modeéle de culture (Sirius Maize). Celui-ci permet de simuler, a partir de processus
physiologiques explicites, le rendement et d'autres caractéres pour différents génotypes dans
une large gamme environnementale, a condition que des parameétres spécifiques a chaque
hybride soient estimés et fournis au modele. Nous avons testé cette approche avec trois
panels d'hybrides de mais : un panel de diversité, un panel qui capture le progres génétique
et un panel d'hybrides récents, comprenant 246, 56 86 hybrides, respectivement. Les
caractéres génotype-dépendant utilisés pour la paramétrisation du modele de culture ont été
mesurés dans des expériences en plateforme de phénotypage sous serre ou au champ. lls
caractérisent la phénologie, I'architecture, la croissance foliaire, les réponses aux états
hydriques du sol ou de l'air, et le nombre de grains maximal de chaque hybride. Nous avons
d’abord montré que des caractéres mesurés en plateforme de phénotypage sous serre
permettent de prévoir les mémes caractéres au champ, soit directement soit via I'utilisation
de modeéles. Nous avons ensuite montré que ces caractéeres en plateforme peuvent étre
estimés, pour un plus grand nombre d’hybrides, au moyen de modeéles de prédiction
génomique. Enfin, nous avons estimé les parametres génotype-dépendants du modeéle a partir
des caracteres mesurés, soit au travers d’équations explicites soit par mise a I'échelle. La
simulation de l'indice foliaire et du nombre de grains a été satisfaisante, dans 9 et 21 essais
au champ, respectivement, en conditions environnementales contrastées. Dans la thése, nous
discutons de la validité de chacune de ces étapes, nécessaires a l'intégration des
connaissances issues de la génétique, des modéles écophysiologiques et de la phénomique.
Nous identifions également des pistes permettant d’améliorer I'approche et sa qualité
prédictive, ainsi que des applications potentielles dans un contexte d’amélioration ou de
recommandation variétale.

Mots clés : modele de culture Sirius Mais, prédiction génomique, phénomique, interaction
génotype-environnement, rendement, indice foliaire, changement climatique.
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GLOSSARY OF TERMS AND ABBREVIATIONS

TERM

MEANING OR DEFINITION

ALA

Average Leaf inclination Angle

BayesA, BayesB,
BayesC, BayesR

Bayesian regression models incorporating mixture priors that mainly differ
in their assumptions regarding markers effects and variance distributions

Best Linear Unbiased Estimates : solutions (estimates) associated with the

BLUEs fixed effects of a linear mixed model

BLUPS Best Linear Unbiased Pre.dictions' : solutions (predictions) associated with
the random effects of a linear mixed model

CGM Crop Growth Model

Cl Confidence Interval

CV scheme Cross-Validation scheme

CVRrmse Coefficient of Variation of RMSE

df Degrees of freedom

DL Deep Learning

EC Environmental Covariates

ETO Reference crop evapotranspiration

fiPAR Fraction of intercepted photosynthetically active radiation

FLN Final Leaf Number

FSA Frequency of Similar Assignment

G-BLUP Genomic - Best Linear Unbiased Prediction

GEl, GxE Genotype-by-Environment Interaction

GN Grain Number

GP Genomic Prediction

GS Genomic Selection

ESmax Max stomatal conductance

GWAS Genome-Wide Association Study




hg?

Genomic heritability

HT3P High-Throughput Plant Phenotyping Platform
HTP High-Throughput Phenotyping

Indoor PF Indoor platform

LA Leaf area index

LAR Leaf appearance rate

LASSO Least Absolute Shrinkage and Selection Operator
LER Leaf expansion rate

LUE Light use efficiency

METs Multi-Environment Trials

PC-BLUP PCoA axes - Best Linear Unbiased Prediction
PCoA Principal Coordinate Analysis

PGR Plant growth rate in biomass

QTL Quantitative Trait Locus

rhpap Relative height at 50% of plant leaf area

RIE Radiation interception efficiency

RMSE Root-mean-square error

RR-BLUP Ridge Regression - Best Linear Unbiased Prediction
rrmse Relative root-mean-square error (same as CVrwse)
SNP Single Nucleotide Polymorphism

SWP Soil Water Potential

UAV Unmanned Aerial Vehicle

VPD Vapor Pressure Deficit

WD Water Deficit

WGP Whole-Genome Prediction

WW

Well-Watered
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INTRODUCTION

General context

World crop production over the last 70 years has increased at an unprecedented rate as a
result of sustained yield increases, via breeding and crop management practices (Agnolucci &
De Lipsis, 2020). However, recent contributions point at crop yield stagnating, while the
demand for agricultural products is rising (Lobell & Gourdji, 2012; Grassini et al., 2013; Ray et
al., 2015; Moore & Lobell, 2015; Schauberger et al., 2018). Changing agricultural policy
(support to input reduction), natural annual variability of growing seasons and climate change
are among the explanations cited for this stagnation or limited growth in yield (Peltonen-
Sainio et al., 2009; Brisson et al., 2010; Moore & Lobell, 2015). Indeed, with warming trends
and limitations on irrigation and fertilization in several regions, crops are experiencing
negative impacts of more frequent heat events, dry episodes, and an increase in evaporative

demand (Tester & Langridge, 2010; Lobell et al., 2011; Challinor et al., 2014).

Maize, a major food and feed crop worldwide (2"¥ largest harvested area, Erenstein et al.,
2022), is an example of an annual cereal that had a long-term yield high increase trend in
farmers’ fields, but tending during last two decades to have a much lower yield growth rate
and higher inter-annual variability (Moore & Lobell, 2015; Agnolucci & De Lipsis, 2020). In
France for instance, the mean grain yield gain was 1.43 g/ha/year from 1951 to 1999 but only
0.35 g/ha/year from early 2000s (Lorgeou et al., 2009, 2019; Fig. 1). In southern and eastern

European countries such as Italy and Hungary, yields are stagnating (Ray et al., 2012).
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Fig. 1 : Maize mean grain yield in France farmers' fields from 1951 to 2018
(Lorgeou et al., 2009, 2019).
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Breeding played an important role in maize yield improvement. Starting from the 1930s, maize
yield remarkably increased due to the breeding and adoption of hybrid varieties (Duvick, 2001;
Fu et al., 2014). Maize breeding contributed to 50-60% of maize yield gains from 1934 to 2004,
and the remaining 40-50% were attributed to appropriate field management (Duvick, 2005).
The limited yield growth rate or stagnation in farmers’ fields during last years were observed
despite of the continuous genetic progress in yield of 1.01 gq/ha/year, estimated in European
growing area with a panel of varieties released from 1950 to 2015 in Welcker et al. (2022).
This indicates that the observed limitation or stagnation in annual yield growth in farmers’
fields is due more to environmental and crop management effects, along with genotype-by-
environment interaction effects that are important especially for quantitative complex traits

such as grain yield (Bertin et al., 2010; Malosetti et al., 2013).

The genotype-by-environment interaction (GEl) is the fact that the phenotypic response (e.g.
yield trait) to environmental conditions varies for different genotypes beyond what is
explained by genotypic and environmental effects, resulting for example in changes of
genotypes ranking for the considered trait in different environments (Malosetti et al., 2013).
The function describing the phenotypic performance of a genotype in relation to an
environmental characterization is called the ‘reaction norm’ by some authors (Falconer &
Mackay, 1996) or ‘response curves’ by others (Millet et al., 2019). Fig. 2A shows the case
where there is no GEl, the genotype and the environment behave additively and the reaction
norms are parallel. The remaining plots show different situations in which GEI occurs:
divergence (Fig. 2B), convergence (Fig. 2C), and the most critical one, crossover interaction
(Fig. 2D). Crossover interactions are the most important for breeders as they imply that the

choice of the best genotype is determined by the environment.

Performance

env1 env2 env1 env2

Fig. 2 : Genotype-by-environment interaction in terms of changing mean performances across
environments: (A) additive model, (B) divergence, (C) convergence, (D) cross-over interaction
(Malosetti et al. 2013).
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GEIl can also be regarded in terms of heterogeneity of genetic variance and covariance. As a
consequence of GEI, the magnitude of the genetic variance as observed within individual
environments will change from one environment to the other, becoming usually lower as

stress conditions increase (Malosetti et al., 2013).

Depending on environmental conditions and management practices, environment and GEl
effects can prevent varieties from reaching their expected genetic values, and consequently
limit yield. The incidence of GEls and a lack of their understanding results in a reduction in the
predictability of trait phenotypes and the realized rates of genetic gain achieved from
selection (Cooper et al., 2016). Breeders and other variety testing actors evaluate each year
candidate varieties in multi-environment trials (METs). Most varieties are evaluated in a
limited number of environments, considered as a combination of year x site x condition
(Robert et al., 2020). Consequently, the environments in which the varieties are evaluated can
be different from the target environments, because of the significant variation between years
(Casadebaig et al., 2016). In addition, only a limited number of varieties are evaluated each
year to control the phenotyping costs (Robert et al., 2020). All these constraints are reducing
the chance of success as they limit the number of genotypes that can be evaluated in the
target environments. Three main tools can help to raise these strong constraints: genomic
prediction (GP) models, phenomics and high-throughput phenotyping (HTP), and crop growth
models (CGMs).

Genomic prediction models

With the availability of low-cost genotyping, genomic prediction has become an attractive tool
to increase the number of genotypes considered for selection and to speed up the breeding
cycle (Hickey et al., 2014; Crossa et al., 2014; Cooper et al., 2014; Araus et al., 2018). Genomic
prediction (GP) consists in predicting quantitative complex traits of candidate varieties by
using all available DNA markers across the genome, usually single nucleotide polymorphism
markers (SNPs) (Meuwissen, 2007). In GP, a phenotyped and genotyped calibration (training)
set is used to estimate DNA markers additive and non-additive effects. Once the model is
calibrated, new candidate varieties can be predicted, as long as their genomic information is
available. Several statistical models or machine learning methods have been proposed for

genomic prediction using genome-wide SNP markers, including : linear mixed (RR-BLUP, G-
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BLUP; Whittaker et al., 2000; VanRaden, 2008; Endelman, 2011; Wang et al., 2018) and
Bayesian (LASSO, BayesA, BayesB, BayesC, BayesR; Meuwissen et al., 2001; Wang et al., 2015;
Shi et al., 2021; Montesinos Lépez et al., 2022) regression models, gaussian kernel models
(Gianola & van Kaam, 2008; Cuevas et al., 2016), random forest and deep learning methods
(Montesinos-Lépez et al., 2018; Crossa et al., 2019; Malgy et al., 2021; Wang et al., 2023).
These GP models mainly differ in their assumptions regarding markers effects and variance
distributions, regarding linearity or nonlinearity of markers effects and their computational
complexity. All result in different prediction accuracies depending on trait genetic architecture
and heritability, training population size and composition and DNA markers density (Tayeh et

al., 2015; Kaler et al., 2022).

Specific GP models were proposed to predict the performance of varieties in different
environments, taking the genotype by environment interaction (GEIl) into account. Fig. 3
presents a short timeline of the type of statistical and machine learning methods used in GP

research in the context of G x E (Crossa et al., 2022).

Ben-Sadoun et ol

Jarquin et ol Lopez-C

Schulz-Streec

Montesinos

Lopez et al

Montesinos
Lopez et al
t Ba

tr

Source of Information

[l ONA markers/Genomic
. DNA markers/Genomic and CGM/crop modeling outputs

. DNA markers/Genomic plus environmental covariates (EC)/enviromics

Fig. 3 : History of the main research involving genomic prediction and G x E interaction as reviewed by
Crossa et al. (2022). Blue boxes denote studies using only DNA markers or genomic information. Green
boxes refer to models in which DNA markers are complemented by stress indices derived from a crop
growth model. Purple boxes refer to models in which DNA markers are complemented by the use of
environmental covariates (EC), such as micro-climatical variables and soil information.
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It was first proposed to adapt the reference GP models to the GEIl context by attributing
environment specific effects to the markers (Schulz-Streeck et al., 2013; Crossa et al., 2016),
or by modeling genetic covariances between environments (Burguefio et al., 2012). In other
studies, environmental covariates (EC) were introduced in the GS model (Jarquin et al., 2014;
Ly et al., 2018; Millet et al., 2019), which allows predicting the performance of varieties in new
environments. Crop growth models (CGM) were sometimes used to adjust the EC estimates
to phenological stages, or to derive EC estimating the stress experienced by the plants (Ly et
al., 2017; Rincent et al., 2019), instead of directly using pedoclimatic data. Finally, deep
learning artificial neural networks (DL) are also being developed for assessing multi-trait,
multi-environment genomic prediction (Montesinos-Lépez et al., 2018; Cuevas et al., 2019;
Costa-Neto et al., 2021). Overall, GP statistical models integrating environmental covariates
or deep-learning models performed the best, with prediction accuracies for yield ranging from

0.50 to 0.85 depending on validation schemes and environment types considered.

Phenomics and high-throughput phenotyping

Since whole-genome sequencing of many crops has been achieved, genomics and breeding
studies have stepped into the big-data and high-throughput era (Li et al., 2021). Hence,
acquisition of large-scale phenotypic data (phenomics) became one of the major bottlenecks
hindering crop breeding (Houle et al., 2010; Li et al., 2021). Phenotyping applies specific
methods and protocols to measure morphological structural traits, physiological functional
traits, and component content traits at different spatial scales (cells, tissues, organs, plants,
canopy, populations) and at appropriate temporal scales, ranging from minutes to months

(Table 1, Fig. 4).

Table 1 : Methods for phenotyping at different scales of plant organization (Tardieu et al., 2017).

Typical phenotyping platforms High-precision platforms Whole-plant, multi-environment Field multi-environment networks
(omic, anatomy, organ) platforms (field or controlled)

Level of plant organization Organ Plant or canopy Canopies in a range of environments

Typical methods Omics, 4D organ imaging, 4D plant/canopy imaging fluxes, Yield, sensor network, remote
fluxes sensors sensing

Typical mechanism Hydraulics, metabolism, Light interception, water Trade-offs between processes
signalling transfer, whole-plant signalling

Methods for trans-scale )

communication

Gene editing, plant simulation

<€

GWAS, model-assisted dissection
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Phenotypic traits
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Fig. 4 : Phenotyping sensors currently available to monitor, quantify, and estimate key
morphological structural traits, physiological functional traits and component content traits of
plants (Li et al., 2021).

Since early 2010s, a variety of high-throughput plant phenotyping platforms (HT3Ps) have
been developed which are now common tools in commercial or research teams (Granier &
Vile, 2014; Tardieu et al., 2017; Yang et al., 2020). Li et al. (2021) defines a ‘HT3P’ as a platform
that can collect massive amounts of phenotypic data from hundreds of plants every day with
a high degree of automation. HT3P is hence a powerful tool allowing us to monitor and
guantify crop growth and production-related phenotypic traits in a non-destructive, fast, and
high-throughput manner. The acquired phenomic data can then be valued in genomics-
assisted breeding approaches (Rutkoski et al., 2016; Araus et al., 2018; Alahmad et al., 2018;
Lopez-Cruz et al., 2020; Guo et al., 2020; Sandhu et al., 2022), along with crop modelling

approaches when the measured traits can be linked to crop growth models formalisms
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parameters (Araus et al., 2018; Messina et al., 2018; Bustos-Korts et al., 2019; Toda et al.,

2020; Lacube et al., 2020).

Various types of indoor and field HT3Ps have been developed (Fig. 5). All phenotyping
platforms integrate cameras, supplemental light sources, automatic watering, and weighing
devices to automatically collect plant phenotypic data (Li et al., 2021). Available cameras
include those capable of capturing RGB, infrared (IR), fluorescence (FLUO), near-infrared (NIR),
multispectral or hyperspectral images (Fig. 4). Indoor high-throughput phenotyping (in a
growth chamber or greenhouse) entails the precise control of environmental factors and an
accurate capture of the plant responses to specific environment conditions. Given the
mechanical structure of the platform and movement mode between the sensors and plants,

an indoor HT3P can be categorized as either a benchtop-type or a conveyor-type (Fig. 5).

Satellite
Aerial
Level 3
(100-1400m)
MAP
Aerial
Level 2
(100-5000m)|
UAP
Aerial
Level 1
(5-200m)
Cable-
suspended
Field
level 4
Gantry-
based
Field
level 3

HT3P phenotyping distance

Mobile

Field
level 2

Pole/tower-
based
Field
level 1

Converyor
-type

Indoor

Level 2

| Benchtop
-type

Indoor

Level 1

Fig. 5 : Examples of high-throughput plant phenotyping platforms (HT3Ps) as reviewed by Li
et al., (2021), including HT3Ps in the greenhouse/growth chamber, field ground-based HT3Ps
and aerial HT3Ps.
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Partial environmental control in indoor platforms limits the unpredictable phenotypic
variation caused by the interaction between genotype and natural environment (GxE).
Therefore, indoor HT3Ps are widely used to study the response of plants to specific growth
conditions, and accurately capture morphological structural, physiological functional or
component content traits (Li et al., 2021). Field platforms account only for 18% of HT3Ps
worldwide (Yang et al., 2020). They operate at canopy level and are affected by weather, biotic
and abiotic stresses, and soil properties, as in farmers’ fields. According to their usage
scenarios and imaging distance, field HT3Ps can be categorized into ground-based and aerial
platforms. Ground-based platforms can be further classified as pole/tower based, mobile,
gantry-based, and cable-suspended (Fig. 5). Likewise, aerial platforms can be categorized, as

unmanned aerial platforms (UAPs), manned aerial platforms (MAPs) and satellite platforms
(Fig. 5).

Each year, the thousands of phenotyping experiments worldwide in environmentally
controlled growth facilities or in the field produce large amounts of phenotypic data (Yang et
al., 2020). However, the reproducibility of results by different research groups is not always
satisfactory because of the unexplained variation of environments (Poorter et al., 2012, 2016).
Thus, environmental factors are vital and should receive at least the same amount of attention
as the traits that are measured (Tardieu et al., 2017; Yang et al., 2020). Envirotyping, defined
as characterizing and quantifying the environmental factors in a high-throughput way, can
help to address this issue (Xu, 2016). Integrated with optimized experimental field trials
designs, envirotyping, crop modelling and genomics, high-throughput phenotyping can

improve the heritability and potential for genetic gain (Araus et al., 2018).

Crop growth models (CGMs)

Crop growth models consist of multiple equations that represent physiological processes of
plants and simulate crop development and growth dynamically, given environmental (e.g., air
temperature, light and soil water) and management (e.g., sowing date, plant density and
fertilizer applications) inputs (Muller & Martre, 2019; Onogi, 2022). CGMs are calibrated using
data from controlled environments and field trials, most often by using model inversion. They
often use parameters calibrated for each module/process independently using a variety of

datasets (Onogi, 2022). Once calibrated, CGMs can predict yield for new (untested)
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environments if conditions at these environments are given. When CGMs are calibrated for
each genotype, estimates of CGM parameters can differ between genotypes. Differences in
parameters are considered as representing the differences in response to environmental
conditions among genotypes. However, calibrating the behaviour of genotypes is most often
limited to the duration of phenological phases because other parameters are highly
interacting, thereby making model inversion nearly impossible. The interconnections and
feedback regulations between the CGMs subcomponents and biological processes, generate
unexpected global system properties, called emergent properties, which do not appear when
the subcomponents are individually considered (Bertin et al., 2010). GxE interactions and
some types of non-additive effects on the expressed phenotype are part of these emergent

properties in CGMs.

CGMs include, for instance, DSSAT (Decision Support System for Agrotechnology Transfer;
Jones et al., 1998) and APSIM (Agricultural Production Systems sIMulator; McCown et al.,
1996; Hammer et al., 2010; Fig. 6), that model canopy-level processes. Both CGMs use a

graphical user interface (GUI) and cover a wide range of crops.

Environment/inputs Radiation Rainfall / + Soll water SLN VPD Temperature Photoperiod
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' .- v . — ‘
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Fig. 6 : Schematic representation of crop growth and development processes interconnection in
APSIM (Agricultural Production Systems slMulator) cereal template (Hammer et al., 2010).

Components of such process-based CGMs are : state variables (X) representing current plant
status (e.g., leaf area index, biomass, and developmental stages), rate variables (R)
representing rates of change in the state variables, environmental variables (E) representing

environmental inputs (e.g., air temperature and light), and parameters characterizing
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functional relationships among the variables (X, R and E) (Horie et al., 1992). State variables X
then relate to each other, and feedback loops exist among variables. Consequently, process-
based CGMs comprise many parameters to be determined. Genotype-dependant parameters
of CGMs have various alias, including genetic coefficients, input traits, physiological traits,
genotype-specific parameters, and genotypic parameters (Onogi, 2022). A shortcoming of
CGMs in a breeding context, is that all necessary input traits have to be measured for all
genotypes to be simulated with the CGM. This may prove to be very costly and complex in

practice, when done on an industrial scale (i.e., for many populations and repeated yearly).

Integration of CGMs and genomic prediction (GP) models

Models used to enable genomic prediction are founded on quantitative genetics theory and
are statistical representations of a complex biological system (Cooper et al., 2016). Hence,
these models do not explicitly take into consideration much of the biology that contributes to
GEls (Hammer et al., 2006). The methodology for GP relies heavily on the creation of suitable
training data sets that span the highly combinatorial inference space (genetic combinations in
the environments) for the intended applications (Cooper et al., 2016). Fitting the models to
the marginal effects across the environments of the training data set to predict marginal
performance in the application set is the most common approach; however, the presence of
important GEls in the application set can be challenging. Extensions of GP models discussed
before, that rely on the identification of suitable environmental covariates have been
developed with success. However, these methods do not explicitly take into consideration the

dynamic nature of the biology underlying GEls.

Recently, Technow et al. (2015) proposed a novel methodology, named CGM-WGP, that
outperformed the benchmarked classical GP model (G-BLUP). It was assumed to take into
consideration the biology underpinning GEls through CGM, while avoiding large-scale
phenotyping costs by using GP. The CGM-WGP method consisted in combining a simple maize
CGM developed by Muchow et al. (1990), with a GP Bayesian model for genotype-dependant
CGM parameters estimation. The model predicted grain yield as a function of plant density,
temperature and solar radiation, as well as four genotype-dependent physiological traits
(parameters) : total leaf number, area of largest leaf, radiation use efficiency and thermal units

to physiological maturity. The tests were performed for a population of inbred lines created
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in silico. CGM parameters for new (untested) genotypes were first predicted with GP, then
their phenotypes (yield values) in tested or new environments were simulated by running the
CGM with the predicted parameters values along with environmental and management
inputs. Predictions accuracies obtained with the CGM-WGP method ranged from 0.42 to 0.77
depending on tested prediction schemes, while accuracies ranged from 0.08 to 0.62 with the
benchmarked G-BLUP model in the study. The method integrating GP model predictions in a
CGM can be generally referred to as GP-assisted CGM (Onogi, 2022; Fig. 7a). Indeed,
phenotypes are predicted here by the CGM, and GP aids these predictions. This approach is
an extension of gene-based models and QTL mapping on CGM parameters (Hoogenboom et
al., 2004; Onogi, 2022). Other early applications of GP-assisted CGM to real data included :
Onogi et al. (2016) for predicting rice heading dates, Cooper et al. (2016) and Messina et al.
(2018) for predicting maize grain yield, Toda et al. (2020) for predicting rice biomass. Finally,

a similar GP-assisted CGM method is developed in our thesis study for maize.

(a) (b)

Genomic prediction-assisted Crop growth model-assisted
crop growth models genomic prediction

Environmental inputs Environmental inputs ‘

Input Input

Crop growth model Phenotype Crop growth model
parameter ®
parameter @ )
Predict Support building GP models
Predict r—
Genomic prediction P

Genomic prediction Y

Predict

Fig. 7 : Genomic prediction-assisted crop growth models (GP-assisted CGMs) and the crop growth
model assisted genomic prediction (CGM-assisted GP). In GP-assisted CGMs (a), GP is used to predict
parameters of CGM for new genotypes. Phenotypes are then predicted with the CGM. In CGM-assisted
GP (b), phenotypes of new genotypes are predicted with GP. CGMs are used to support development
of GP models (Onogi, 2022).

Alternatively, CGMs can be used to assist GP models in multiple ways. Such integration can be
termed CGM-assisted GP (Onogi, 2022; Fig. 7b). Mainly three approaches have been proposed
for that. (i) The first is the use of CGMs to simulate plant growth stages, which are then used
for inferring environmental covariates that can affect GxE interactions (Heslot et al., 2014; de
los Campos et al., 2020). (ii) The second approach is the use of CGMs to characterize

environments (Ly et al., 2017). In the latter study, a CGM model (APSIM) was run to compute
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indices of nitrogen nutrition stress for wheat, which were then used to characterize multiple
experiments environments. GP was finally conducted by considering the genotype-by-index
interactions. (iii) The third approach is the use of CGMs to predict intermediate or indicator
traits. In Robert et al. (2020), wheat heading dates for new environments were predicted using
a CGM, then predicted heading dates were included as covariates in GP mixed models to
predict yield. In Bustos-Korts et al. (2019), dynamics of biomass and canopy cover for wheat
genotypes were simulated using APSIM model, then parametric traits were extracted from
these dynamics and used in a multi-trait GP model for predicting grain yield. Similarly, in Jighly
et al. (2023), a CGM was used to simulate phenology, nitrogen and biomass traits, then these
traits were used in a GP model to predict some field performance traits including (yield, grain

number and grain protein content).

Elements on maize cropping cycle and growing conditions

Maize (Zea Mays L.) is a monoecious species of the Poaceae family and an annual summer
crop in temperate regions. It is usually sown between March and May in Europe, and maize
grain is harvested from September to November, depending on varieties maturity groups
(duration from sowing to grain complete physiological maturity). Maize is not evenly
distributed across Europe. It is concentrated in regions with favourable climate and
predominantly grown in rainfed conditions (Webber et al., 2018). When environmental
conditions become suboptimal or even dry, as in southern Europe, and when water is available
and economical strategies permit it, maize is grown under irrigated conditions. For instance,
irrigated maize covered approximately one third of the irrigated cropping area in France in

2022 (Agreste, statistiques agricoles).

The maize cycle is commonly characterized by three main phases, namely (i) the vegetative
phase, (ii) the flowering time phase during which reproductive organs rapidly grow and (iii)
the grain filling during which the ear grows until maturity (Zhao et al., 2012). The vegetative
growth stages extend from sowing to the appearance of tassel (male inflorescence) at the top
of the plant (Fig. 8). They include a strictly vegetative period, from sowing to tassel initiation,
and a period, from tassel initiation to tasselling (visible tassel), during which vegetative and
reproductive growths overlap. The leaves are successively initiated at the shoot apical

meristem until the apex becomes reproductive and initiates the tassel. At that stage,
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approximately 50 % of the leaves are visible, while the remaining younger leaves are still
enclosed in the sheath of the developed older leaves. The female flowering structure, the ear,
is usually initiated in axillary buds, 1 to 2 phyllochrons after the tassel. Female flowers are
sequentially initiated as floret rings (or cohorts) around a central cob. Successive florets are
aligned along rows, the number of which corresponds to the number of florets synchronously
initiated in the same ring. Flowers are therefore ranked from ear base to ear apex according
to their order of initiation. Each flower includes an ovary with an attached silk (elongated style)
and potentially produces one grain if fertilised successfully. The number of fertilisable ovules
per ear, i.e. the potential number of grains at pollination, is therefore the product of the

number of rows by the number of flowers per row.

R2

T — -\ 7R \= A . ) /'%} g

[ve | w1 | R6 |

Fig. 8 : Different standard growth stages of a maize crop, including vegetative (V) and reproductive
(R) stages. The V developmental milestones include : emergence (VE), in which the coleoptile reaches
the soil surface and elongates due to its exposure to sunlight; V1, in which the lowermost leaf has a
visible leaf collar; V3, in which the plant has three leaf collars, whose growth purely relies on
photosynthesis; V7, in which the plant has seven leaf collars and experiences rapid growth; V10, in
which the plant equipped with 10 leaf collars has a rapidly-growing stalk and VT, in which the last
branch of the tassel is visible. The R developmental milestones include : R1, in which any silk is visible
outside the husk; R2, in which kernels are white and resemble a blister in shape; R3, in which kernels
are yellow on the outside with a milky white inner fluid; R4, in which starch is dough-like consistency;
R5, in which kernels are dented and R6, in which all kernels on the ear have reached maximum dry
weight with physiological maturity (Zhao et al. 2012).
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Although, strictly speaking, the reproductive stages begin at floral transition, reproductive
growth stages are most often considered as beginning with the emergence of the immature
tassel about one week before anthesis and female flowering, defined by silk emergence out
of the husks (bracts) that enclose the ear (Fig. 8). The rate of silk elongation inside the husks
is crucial to ensure male and female synchronous flowering. Pollen is shed for several days
from the main axis of the tassel to the base of the lower branches. It is captured by the silk
trichomes, small hair-like outgrowths along the silks. Pollen tubes grow through the silk to
enter the ovary. During a first period of 8-10 days after fertilisation (lag-phase) tissue
differentiation and cell divisions occur in the embryo and endosperm, without noticeable
biomass increase. Grain abortion may occur during this period, and the yield component grain
number is therefore determined at the end of it (Borrds & Westgate, 2006). It is followed by
the period, called grain filling phase, during which starch and proteins are deposited into the
reserve tissues of the grain. This period is characterised by a rate and duration of grain filling,
which determine the yield component ‘individual grain weight’. The physiological maturity,
i.e. the date when the grain has reached it maximum dry weight, occurs around eight weeks

(50 to 60 days) after pollination. Grains continue to dry until the harvest.

Conditions around flowering time affect the final number of grains by impacting pollination
(anthesis, pollen viability), fertilization (silk growth, silk receptivity) and/or ovary/embryo
development (ovary or seed abortion) (Oury et al., 2016; Turc & Tardieu, 2018). Individual
grain weight depends on conditions during grain filling. Grain weight has usually a lower
impact on grain yield that grain number. Hence, maize has a critical period around flowering
time, during which it is subjected to abortion due to drought and heat, expected to worsen

with climate change (O’Keeffe, 2009).

Overview and outline of the thesis

The general objective of this thesis is to develop and evaluate a method for predicting yield of
a large number of maize varieties across multiple environment, by using the knowledge
accumulated for the response of major traits to environmental conditions. To achieve this
goal, we combined statistical genomic prediction models, novel phenomic approaches and a

crop growth model ‘Sirius Maize’ (Fig. 9).
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Fig. 9 : Schematic representation of thesis approach combining phenomics, genomic prediction
and crop modelling.

This method may result in a new high-throughput tool for simulating performance of hundreds
of maize genotypes in hundreds of environments, in the context of either breeding for new
varieties or evaluating them for recommendation to farmers. Indeed, this thesis was carried
out in partnership with ARVALIS, an applied research organisation for farmers in France,
specialised in crops including small grain cereals and maize. Its main mission is to propose
effective agronomic solutions in the multiplicity of scenarios. Its includes variety choice and
management, along with economic, environmental and sanitary solutions, that are then
communicated to farmers, to help them to adapt and face current challenges such as climate

change, societal demands and commercial requirements.

The first step in our study is developed in Chapter 1 and published as a research paper in
‘Nature Communications’, entitled : ‘Robotized indoor phenotyping allows genomic prediction
of adaptive traits in the field’. Its objective was to analyse traits measured in indoor high-
throughput phenotyping platform experiments, which are related to maize development and
growth in the field. Three panels of maize hybrids were analysed here (Fig. 10): a ‘diversity
panel” with 246 hybrids (Millet et al., 2019), a ‘genetic progress panel’ with a historical series

of 56 commercial hybrids (Welcker et al., 2022) and a ‘recent hybrids panel’ including 86
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hybrids marketed from 2008 to 2020 (with most indoor measurements made on 20
contrasting hybrids only, for the latter panel). We showed that genotypic values of traits
measured indoor closely correlated with those in the field, either directly or via modelling. We
then examined to what extent measurements in indoor platform can serve to train statistical

prediction models that estimate genotypic values of traits based on genomic information only.
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Fig. 10 : Diagram of the three studied panels composition (a), and distribution of their field
trials networks (b, c & d).

Chapter 2 is entitled : ‘Acquisition and analysis of extended field data in contrasting
environmental conditions for crop model simulation on a set of recent hybrids’. Its objective
was to analyse the dataset collected in a multi-site field experiment for the recent hybrids
panel. Indeed, we included here the field data collected in the European project INVITE
(https://www.h2020-invite.eu/) on a subset of 30 varieties from the recent hybrids panel. It
consisted of 33 experiments, defined as combinations of site x year x watering regime,
distributed on a west—east transect for temperature and evaporative demand across Europe
in both rainfed and irrigated conditions. We characterized the environmental conditions
experienced by plants in each field based on weather and soil water sensors. We estimated

environmental indices and scenarios for all experiments. We also calculated a trait that is an
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essential genotype-dependent parameter of Sirius Maize model, namely the maximum grain
number potential per plant. We also analysed leaf area index in contrasting experiments,
which was estimated via drone imaging and inversion of the radiative transfer model
‘PROSAIL" (Berger et al., 2018; Blancon et al., 2019). Finally, we estimated genotypic
sensitivities of grain number to mean soil water potential and mean daily maximum

temperatures during the flowering phase using a linear regression model.

Chapter 3 is entitled : ‘Simulating leaf area index and grain number for panels of maize hybrids
in contrasting environmental conditions’. Here, we tested the consistency of our approach,
which aimed at simulating the performance of hundreds of genotypes in hundreds of
environments via combining phenomics, genomic prediction and crop modelling. The
specificity of this chapter was to perform simulations based on a crop model whose genotype-
dependent parameters originate from traits presented in previous chapters. However, due to
time constraints, our study was limited to the first part of maize crop cycle, with running
simulations for leaf area index and grain number for tens of varieties in contrasting

environmental conditions. We used for that the process-based crop model ‘Sirius Maize’.
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% Check for updates Breeding for resilience to climate change requires considering adaptive traits

such as plant architecture, stomatal conductance and growth, beyond the
current selection for yield. Robotized indoor phenotyping allows measuring
such traits at high throughput for speed breeding, but is often considered as
non-relevant for field conditions. Here, we show that maize adaptive traits can
be inferred in different fields, based on genotypic values obtained indoor and
on environmental conditions in each considered field. The modelling of
environmental effects allows translation from indoor to fields, but also from
one field to another field. Furthermore, genotypic values of considered traits

match between indoor and field conditions. Genomic prediction results in
adequate ranking of genotypes for the tested traits, although with lesser
precision for elite varieties presenting reduced phenotypic variability. Hence,
it distinguishes genotypes with high or low values for adaptive traits, con-
ferring either spender or conservative strategies for water use under future

climates.

Breeding for the improvement of crop resilience is increasingly
necessary for the sustainability of cropping systems and for food
security in the context of climate change and growing population’*.
Most current breeding schemes are based on yield measurement of
thousands of genotypes grown under diverse environmental sce-
narios, assisted by genomic selection that allows yield prediction
for many thousands of untested genotypes based on their genomic
information®*. In this approach, the measurement of other traits is
most often limited to crop cycle duration, which defines the grow-
ing areas in which resulting genotypes can be grown, and to traits
that may jeopardize the commercialization of selected candidates,
such as resistance to diseases or quality performance (e.g. oil con-
tent or protein content in rape seed and wheat, respectively)’.
However, in the context of climate change, other traits that affect

light interception, plant development, transpiration and growth are
important for predicting, via statistical or crop models, the suit-
ability of genotypes to future environmental conditions®®. Fur-
thermore, a recent analysis of maize genetic progress suggests that
physiological traits involved in plant response to heat and drought,
such as leaf growth rate or stomatal conductance, have not been
improved over the last 60 years of maize selection’. Yield was
improved via other traits such as the fine-tuning of phenology and
the constitutive increase of grain number, but physiological adap-
tive traits are still a potential reservoir of interesting alleles for cli-
mate change’.

The progress of high-throughput phenotyping now allows one
to measure physiological traits for hundreds of genotypes. Robot-
ized indoor phenotyping platforms allow estimation, with typical

TLEPSE, Univ Montpellier, INRAE, Montpellier, France. 2ARVALIS, Chemin de la céte vieille, Baziege, France. 3GQE-Le Moulon, INRAE, Université Paris-Sud,
CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France. *ARVALIS, 45 Voie Romaine, Ouzouer-Le-Marché, Beauce La Romaine, France. °DIA-
SCOPE, Univ Montpellier, INRAE, Montpellier, France. 8ARVALIS, Station de recherche et d’expérimentation, Boigneville, France.

e-mail: francois.tardieu@inrae.fr

Nature Communications | (2023)14:6603

27


bouidgha
Machine à écrire
CHAPTER 1

bouidgha
Machine à écrire
27

bouidgha
Crayon


Article

CHAPTER 1

https://doi.org/10.1038/s41467-023-42298-z

time definitions of some minutes to one day, of traits that underlie
the genetic variability of leaf area and their responses to environ-
mental conditions, e.g. leaf expansion rate, leaf width, phyllochron
and leaf number'°™, They also allow estimation of traits controlling
transpiration, e.g. stomatal conductance’* and those controlling
plant architecture, e.g. the vertical distribution of leaf area and the
azimuthal distribution of leaves along the stem, with good
heritability”. Then, light interception, transpiration, and radiation
use efficiency can be simulated in virtual field canopies, which
reproduce 3D plants characterized in the indoor platform™™, Field
phenotyping also allows measuring leaf area at several dates, for
hundreds of genotypes in different fields characterized by mea-
sured environmental conditions'®?°. This can result in the estima-
tion of intercepted light in the same fields and, via model inversion,
of leaf area and plant architecture” >,

However, the use in breeding of these physiological and growth-
related traits faces the difficulty of their high sensitivity to environ-
mental conditions, resulting in large genotype X environment
interactions® . This difficulty is not limited to the extrapolation of
trait values from indoor to field conditions: most of these traits also
largely vary between fields depending on environmental conditions,
making difficult the prediction of traits in one field from those mea-
sured in another field*****°. The relationship between these traits and
yield is also highly depending on environmental scenarios***.. Conse-
quently, physiological adaptive traits have not been considered per se
in breeding programs’?2,

The recent development of speed breeding in controlled con-
ditions may offer new opportunities for selection strategies invol-
ving plant traits. Speed breeding reduces the duration of each
generation by setting environmental conditions favouring rapid

development, thereby allowing up to eight generations of selection
per year®?*, Yield and agronomic traits like disease resistance are
predicted based on genomic information at each generation, while a
full phenotyping of the most promising genotypes is carried out in
the field after some generations®. However, this approach also
potentially includes, in breeding schemes, other traits measured
indoor for training a prediction model used in genomic selection,
and phenotyped for selected candidates after a few generations. For
instance, in wheat, Watson et al.** performed speed breeding
involving the length of flag leaves and ear length, in addition to
yield. Conditions for the use of speed breeding in our case are that
physiological adaptive traits translate from indoor conditions to the
field, and are accurate enough to make it feasible to implement
rapid cycling based on indoor phenotyping and genomic predic-
tion. Three panels of maize hybrids were used to test these condi-
tions (Table 1, Supplementary Table 1): a ‘diversity panel’ with 246
hybrids®, a ‘genetic progress panel’ with a historical series of 56
commercial hybrids® and a ‘recent hybrids panel’ with 86 commer-
cial hybrids marketed from 2008 to 2020 (most indoor measure-
ments on 20 contrasting hybrids, Supplementary Data 1 and
Supplementary Table 2).

In this work, we first show that genotypic values of traits measured
indoor closely correlate with those in the field, either directly or via
modeling (Table 2). We then show that, although absolute trait values
differ if measured indoor or in the field, they still follow common
trends in response to environmental conditions, and can be inferred by
using an ecophysiological model. Finally, we examine to what extent
measurements in indoor platforms can serve to train statistical pre-
diction models that estimate genotypic values of traits based on
genomic information only (Table 2).

Table 1| Summary of variance components and genomic heritability of considered traits

Trait Unit Panel # # Mean value hy’ oy’ a2 042 o2
Hyb Rep

Leaf appearance rate (LAR) Leaf/ day,o.c  Diversity panel 246 n 0.251 0.63 1.4E-04 1.1E-04 3.4E-05 8.1E-05
Genetic pro- 56 7 0.265 0.63 1.7E-04 9.2E-05 7.4E-05 9.9E-05
gress panel
Recent hybrids panel 50 3 0.262 0.56 4.8E-05 2.5E-05 2.3E-05 3.7E-05

Vegetative phase duration Daysyg oc Diversity panel 246 12 68.22 0.82 4.25 3.66 0.59 0.95
Genetic pro- 56 7 63.34 0.7 7.39 5.20 219 3.05
gress panel
Recent hybrids panel 60 9 65.02 0.68 21 1.24 0.86 0.99

rhpap (relative height at 50% of Unitless Diversity panel 246 n 0.308 0.74 7.8E-04 6.3E-04  1.4E-04 2.7E-04

leaf area) Genetic pro- 56 7 0.279 0.69 15E-03 9.9E-04 49E-04 6.8E-04
gress panel
Recent hybrids panel 20 3 0.360 0.54 1.1E-03 5.3E-04 5.2E-04 9.1E-04

Stomatal conductance (gSmax) mmol/m?/s Diversity panel 246 n 108.4 0.48 57.2 38.4 18.8 61.2
Genetic pro- 56 7 119.8 0.53 61.77 31.35 30.42 54.02
gress panel
Recent hybrids panel - - - - - - - -

Leaf expansion rate (LER) cm?/daysg ¢ Diversity panel 246 n 134.6 0.61 107.6 76.2 31.3 69.0
Genetic pro- 56 7 163.9 0.62 343.8 215.0 128.8 21.5
gress panel
Recent hybrids panel 20 3 146.9 0.54 221.6 110.0 m.5 185.5

Leaf area index (LAI) Unitless Diversity panel - - - - - - - -
Genetic pro- 56 7 3.65 0.66 0.23 0.15 0.08 0.13
gress panel
Recent hybrids panel - - - - - - - -

#Hyb, number of hybrids; for the recent hybrids panel, it is defined by the number of hybrids in the considered fields or in the indoor experiment. #Rep, number of independent values calculated for
the considered trait. h97, genomic heritability (narrow-sense, see Methods), 097, total genetic variance. 0, and o4’, variances explained by additive and dominance relationship matrices’?,

respectively. o.% residual variance. For estimations per experiment, see Supplementary Table 3.
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Results

Traits measured indoor correlated with those in the field,
depending on categories of traits

A genetic approach based on indoor trait measurements requires that
the latter are genetically correlated to measurements of the same traits
in the field. However, such comparison is not always possible, because
robotized indoor phenotyping can measure traits that would be
impossible, or very tedious, to measure in the field, such as stomatal
conductance or the 3D leaf distribution on the plant stem. Conversely,
some traits measured indoor are largely irrelevant to the field, in
particular those performed on whole canopies. Hence, comparisons of
the genetic variability of trait values obtained indoor and in the field
face different levels of difficulty depending on traits. We focused our
study on traits that are heritable and have a direct impact on biomass
accumulation (Table 1 and Supplementary Table 3). They present
contrasting ‘phenotypic distances™ between indoor and field mea-
surements, thereby causing different degrees of complexity.

Leaf appearance rate (LAR) represents the simplest case, as it is
measured with the same protocol indoor and in the field. Its genomic
heritability was 0.63 in the diversity and genetic progress panels
(Table 1). In the ‘recent hybrid panel’ (Fig. 1 and Supplementary
Tables 2 and 4), correlations between genotypic values indoor and in
the field (Fig. 1a and Table 2) were measured either via correlations
between BLUEs estimated values or via genetic correlations assessed
with a multivariate mixed model’**. As expected*’, genetic correla-
tions were lower than correlations between BLUEs, but were still

0.31

o o

N N

w ~
; |

Observed LAR
Field 3 (leaf / dygec)

0.19 t + u u
019 023 027 031 019 023 0.27

Observed LAR Indoor 1 (leaf / dyg-c) Observed LAR Field 1 (leaf / dygec)

0.31

0.31
c d
o
TS0 1 ohagf?0| 1 :
4= o ® < i ® o
83 X A
éﬁ 0.23 + ©° &% +
a2
om
0.19 t + t +
019 023 027 031 019 023 027 0.31

Observed LAR BLUEs (leaf / dyyc)

Fig. 1| Leaf appearance rate (LAR) translated from platform to field, and could
be inferred via genomic prediction. a Correlations between genotypic values
measured indoor and in a field. b Correlations between one field and another field
were similar to those between indoor and a field. ¢ Comparison of observed mean
genotypic values and mean predicted values (G-BLUPs) in a 5-fold cross-validation
scheme with 10 iterations. d Comparison of observed mean genotypic values and
predicted values in the independent dataset, with observed values originating from
data of a, b (BLUEs) and G-BLUP model calibration made using dataset of c. In

a, band d light blue circles, mid-early hybrids (G2), dark blue squares, intermediate
hybrids (G3), red triangles, mid-late hybrids (G4). In ¢, purple empty circles,
diversity panel; red and yellow empty circles, genetic progress panel, hybrids
released before 1980 and 2000, respectively; green empty circles, hybrids released
after 2000. In a, r=0.57 (95% Cl=0.19-0.81), n=21, df=19, p-value = 0.007,
CVrmse =7.7%. In b, r=0.49 (95% Cl=0.12-0.74), n =26, df=24, p-value = 0.011,
CVrwmse =5.3%, In ¢, r=0.58 (95% Cl = 0.50-0.65), n =302, df=299, p-value <2.2E-
16, CVrumse =5.2%. In d, r=0.53 (95% CI= 0.30-0.71), n =50, df =48, p-value = 6.3E-

05, CVruse = 2.8%. Significance of the correlation coefficients was tested using two-

sided t-test. For spearman correlation of ranks (rho) and other statistics, see Sup-
plementary Tables 4 and 5. Source data are provided as a Source Data file.

significant (p-value < 0.02). In both cases (Table 2), they were slightly
higher than those between one field and another field (Fig. 1b; r=0.57,
n=21, p-value=0.007 and r=0.49, n=26, p-value=0.011, respec-
tively, for correlations between BLUEs). The latter are considered here
as a benchmark for evaluating the quality of translation from indoor to
field experiments. Importantly, the ranking of hybrids and their dis-
tribution in highest and lowest quartiles were essentially conserved
between indoor and field conditions, a necessary condition for
breeding (Supplementary Table 4). Furthermore, these correlations
and rankings were similar to those between fields for the duration of
the vegetative phase, a trait that is commonly measured in breeding
programmes (Fig. 2a, b).

Plant architecture is a more difficult case because its measure-
ment relies on different principles in indoor vs field experiments
(Fig. 3, Table 2, and Supplementary Tables 2 and 4). The architectural
trait considered indoor (rhpap) was derived from 3D reconstructions of
individual plants, via the difference in altitude between the top of the
plant and the point where half of leaf area is reached, normalized by
plant height®™. This trait is closely related to light interception by a
canopy” and had high heritability (Table 1). It cannot be measured in
the field, where 3D reconstruction of individual plants cannot be
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Fig. 2 | The duration of the vegetative phase, a trait measured in most breeding
schemes, was not better related between different fields than other traits
compared indoor and in the field in Figs. 1-4. a, b Comparison of observed values
in 3 field experiments. ¢ Comparison of observed mean genotypic values and mean
predicted values (G-BLUPs) in a 5-fold cross-validation scheme with 10 iterations.
d Comparison of observed mean genotypic values and predicted values, in the
independent dataset. Observed values originated from data of a, b (BLUEs) and
G-BLUP model calibration was performed using dataset of c. In a, b and d, light blue
circles, mid-early hybrids (G2), dark blue squares, intermediate hybrids (G3), red
triangles, mid-late hybrids (G4). In ¢, purple empty circles, diversity panel, red and
yellow empty circles, genetic progress panel, hybrids released before 1980 and
2000, respectively; green empty circles, hybrids released after 2000. In a, r=0.69
(95% CI=0.52-0.81), n =53, df =51, p-value =9.4E-09, CVrmse =4.4%. In b, r=0.47
(95% Cl=0.23-0.65), n =55, df =53, p-value = 0.0003, CVgymse =7%, In ¢, r=0.84
(95% Cl=0.81-0.89), n=302, df =300, p-value < 2.2E-16, CVgmse =2.7%. In

d, r=0.71 (95% Cl=0.56-0.82), n = 60, df =58, p-value = 1.5E-10, CVrpsg = 2.5%.
Significance of the correlation coefficients was tested using two-sided ¢-test. For
rho and other statistics, see Supplementary Tables 4 and 5. Source data are pro-
vided as a source Data file.
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Fig. 3 | Plant architecture translated from platform to field, and could be
inferred via genomic prediction. a Schematic representation of average leaf
inclination angle (ALA) in the field, estimated from UAV images at flowering time,
via inversion of the model PROSAIL**’5 and rhPAD measured indoor as the relative
altitude, from the top of the plant, where 50% of leaf area is reached®. b, ¢ and d
Correlations between rhPAD (indoor) and ALA (Fields 5, 4 and 2, respectively) for
the genetic progress panel (b) and the recent hybrids panel (c, d). e Comparison of
observed mean genotypic values and mean predicted values (G-BLUPs) in a 5-fold
cross-validation scheme with 10 iterations for rhpap. f Comparison of mean geno-
typic values (BLUEs) and predicted values (G-BLUPs) in the independent dataset. In
b, c and f, light blue circles, mid-early hybrids (G2), dark blue squares, intermediate
hybrids (G3), red triangles, mid-late hybrids (G4). In d, purple empty circles,
diversity panel; red and yellow empty circles, genetic progress panel, hybrids
released before 1980 and 2000, respectively; green empty circles, hybrids released
after 2000. In b, r=0.77 (95% Cl=0.64-0.86), n =56, df = 54, p-value = 2.85E-12. In
¢, r=0.58 (95% Cl=0.15-0.82), n=18, df =16, p-value=0.012. In d, r=0.60 (95%
Cl=0.18-0.83), n=18, df =16, p-value =0.009. In e, r=0.65 (95% Cl=0.59-0.72),
n=302, df =297, p-value < 2.2E-16, CVrmsg = 9.4%. In f, r=0.42 (95% Cl =-0.02-
0.73), n=20, df =18, p-value = 0.06, CVrysg = 15.6%. Significance of the correlation
coefficients was tested using two-sided t-test. For rho and other statistics, see
Supplementary Tables 4 and 5. Source data are provided as a Source Data file.

performed. Conversely, drone imaging in the field results in the cal-
culation of a related trait, the Average Leaf inclination Angle (ALA),
derived from the inversion of the radiative transfer model
‘PROSAIL**, which takes into account the deviation of light inter-
ception efficiency of a given canopy in relation to a standard canopy
having the same leaf area. The genotypic values of ALA measured in the
field correlated to those of rhpsp measured in a phenotyping platform
in an experiment with 56 maize hybrids of the ‘genetic progress’ panel
(Fig. 3b, Field 5, Supplementary Tables 2 and 4). The same applied to
20 hybrids of the ‘recent hybrids’ panel in two field experiments, with
good relationships between rhpap and ALA (Fig. 3¢, d), high heritability
of both variables (Supplementary Fig. 1) and good conservation of
lowest and highest quartiles (Supplementary Table 4). Notably, ALA
values and heritability were sensitive to crop phenological stage

whereas those of rhpyp were more stable (Supplementary Fig. 1).
Hence, architectural data collected indoor were, in this case, appro-
priate for characterizing each genotype in models of light interception,
whereas ALA measured in the field would be more complex to use in
this context.

In the same way, the leaf expansion rate of individual plants (LER)
can only be measured indoor, with good heritability (Table 1)*. Cor-
responding measurements in the field are leaf area or leaf dimensions
at given dates, so direct comparisons were not possible. However, we
show below that the final width and length of maize 8th leaf matched
between indoor and field conditions for the diversity panel. Hence,
final leaf dimensions potentially allow indirect calculation of LER in the
field*.

Leaf area index (LAI), a key feature for light interception and
transpiration, is defined for a fraction of field canopy (typically 1 m?).
Although heritable within a given field, it largely differs between fields
in relation to environmental conditions and plant density®. It can be
measured indoor, but a direct comparison with the field would make
no sense because the density and spatial arrangement of plants in
indoor experiments make the considered canopy irrelevant to the
field***°. Indeed, LAl measured in the field was not correlated to the LAI
calculated by considering plant leaf area measured indoor at flowering
time, multiplied by the plant density in the corresponding field (Sup-
plementary Fig. 2, r=-0.25, n =51, p-value = 0.073). This was because
environmental conditions and management practices were too dif-
ferent between the greenhouse and the field. Instead, we calculated
LAl based on the genotypic values of upstream traits measured indoor
(Table 2 and Fig. 4). We compared (i) measured values in the field,
obtained via UAV imaging and the inversion of the PROSAIL radiative
transfer model*"*? with (ii) the LAl simulated by a crop model". Model
inputs were the genotypic values of four traits measured in indoor
platform (LAR, maximum leaf growth rate (LER), responses of leaf
growth rate to VPD and soil water potential, and final leaf number),
plus plant density and the environmental conditions recorded every
hour in the considered field. The correspondence between measured
and estimated LAI, tested on the ‘genetic progress’ panel suggested
that this approach is promising in well-watered (WW) condition
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(r=0.64, n=>51, p-value =3.6E-07, Fig. 4a), and even in water-deficit
(WD) condition although the indoor platform experiment was per-
formed in WW condition, except for the response of leaf growth rate to
soil water potential (r=0.44, n=>51, p-value=13E-03, Fig. 4b and
Supplementary Table 4). Notably, the PROSAIL model inversion
allowing LAl estimation in the field always resulted in values lower than
4.5 for all hybrids. When the real LAl was higher, light interception
efficiency was close to 100%, so model inversion could not provide LAI
values higher than 4.5%.

Finally, stomatal conductance is a difficult case in which traits
cannot be directly measured at high throughput, either in the field or
in indoor platforms. Its measurement for one leaf requires between 3
and 15min, depending on the considered device, making high-
throughput measurements impossible. However, it can be indirectly
estimated at plant level in platform experiments by inversion of the
Penman-Monteith equation, based on measurements of individual
plant transpiration, leaf area, light, and VPD'. Resulting estimations of
whole-plant stomatal conductance were well related to leaf stomatal
conductance measured via gas exchange, between well-watered and
water deficit treatments (Fig. 5a and Supplementary Table 1), but also
between genotypes in the well-watered treatment (> = 0.54).

Overall, the ranking of genotypes for leaf appearance rate, plant
architecture, and LAI were consistent between field and indoor con-
ditions, thereby opening the way for a prediction of values in the field
based on platform information (Table 2 and Supplementary Table 4).
This could not be tested for stomatal conductance, for which field
measurements cannot be performed and indirect measurements via
canopy temperature are not precise enough in non-extreme
conditions.

The differences in absolute values of traits between indoor and
fields were accounted for by environmental conditions

Beyond the correlations between genotypic values of traits measured
indoor and in the field, it is the absolute values of traits, measured in
each experiment, that eventually drive the adaptation of studied
genotypes to drought and high temperature. For example, a correct
estimation of genotype ranking for LAl has a very small impact on light
interception if all genotypes have a LAI higher than 4, whereas the
same genotype ranking in a range of LAl from 2 to 4 has a large
impact"’. Meta-analyses showed that phenotypic values differ between
controlled conditions and field*, but they also largely vary from one
field to another one'**, Hence, we tested if the difficulty for translating
values between two experiments may not be specific to field - plat-
form comparisons, but applies to comparisons between any environ-
ment and another one, depending on environmental conditions in
each experiment.

This hypothesis was first tested by examining the mean absolute
values of maize leaf length and width between field and indoor plat-
forms for the diversity panel in Lacube et al.**. A superficial analysis
would suggest that the mean dimensions of leaf 8 largely differed
between indoor and field conditions, with a mean leaf length of 115 vs
76 cm, respectively, and a mean leaf width of 6.8cm vs 7.5cm,
respectively (note the inversion of ranking between the two traits).
However, leaf dimensions also largely varied among field experiments,
from 6.8 to 10 cm for leaf width and from 68 to 102 cm for leaf length
(Fig. 6a, b). We showed earlier that leaf width depends on the amount
of light intercepted during the growth of the considered leaf*.
Accordingly, leaf width in the field was linearly related to the cumu-
lated intercepted light (r = 0.83, n= 64, p-value < 2.2E-16), and the same
relationship accounted for the difference between experiments in
fields and platform (Fig. 6a). In the same way, the large variability of
leaf length, in field and controlled conditions, was accounted for by the
vapor pressure deficit (VPD) during leaf growth (Fig. 6b, r=-0.62,
n=44, p-value = 6.2E-06), consistent with studies showing a linear
effect of VPD on leaf elongation rate*. Hence, leaf width and length did

not differ intrinsically between indoor and field conditions: differences
were accounted for by the same environmental conditions than those
that accounted for differences between one field and another one, and
could be calculated via a crop model™.

A similar case occurred with temperature-dependent traits, such
as the duration of the vegetative phase (Fields 1, 2, and 3, Supple-
mentary Table 2) or leaf appearance rate (Fields 1, 3 and PhenoArch,
Supplementary Table 2). When expressed in calendar time, these trait
values differed greatly between environments (Supplementary Fig. 3a,
b), whereas they were consistent if the effect of temperature was taken
into account via a model of thermal time*®*°. Expressed in this way,
measured values were similar between field experiments for the
duration of the vegetative phase and for LAR (Figs. 2a, b and 1b,
respectively) or between a field experiment and an indoor platform
experiment (Fig. 1a), although some differences still existed between
experiments (CVrvse = 4.4% and 7% in Fig. 2a, b, CVrmse = 5.3% and 7.7%
in Fig. 1a, b). Among possibilities for explaining such differences in
duration of the vegetative phase and LAR, the frequency of field visits
was three days on average, but slightly differed between experiments.

Overall, values translation from indoor platforms to field, and
from one field to another field, could be carried out for a range of traits
by taking into account appropriate environmental variables.

Measurements in indoor platforms can be used for genomic
prediction of traits

High-throughput phenotyping allows characterization of some hun-
dreds of genotypes (at most) whereas many thousands of genotypes
are required for breeding®*. In the same way, it would not be feasible to
phenotype the offspring at each generation of speed breeding because
of the resulting cost and workload***®. Hence, the use of physiological
traits in breeding requires one’s ability to predict them based on
genomic information, as it is the case for yield**"'. We have tested this
possibility for the traits presented in the former paragraphs. Briefly, we
trained a G-BLUP model based on the 246 hybrids of the ‘diversity
panel’ and the 56 hybrids of the ‘genetic progress’ panel (Supple-
mentary Table 1). This training was performed with the genotypic
means (BLUEs over the experiments carried out in Millet et al.** and
Welcker et al.’) of the duration of the vegetative phase, the leaf
appearance rate, maximum leaf expansion rate (calculated with two
methods based on different assumptions, see “Methods” section), the
architectural trait rhpap and stomatal conductance. Predictions were
performed using the genomic information at 440 000 polymorphic
SNPs. Prediction accuracies and RMSEs were assessed either with a
5-fold cross-validation (CV1) scheme® (random sampling of hybrids
using a stratification strategy for respecting the proportions of genetic
groups, Supplementary Fig. 4), or with an external validation set made
of genotypic trait means estimated in the ‘recent hybrids panel’
(independent experiments, Supplementary Data 1).

Cross-validation provided good quality of prediction for studied
traits, assessed either by the correlation (r) between observed BLUEs
and predicted G-BLUPs values, or by the prediction accuracy of
genomic selection (Acc), calculated by dividing the correlation coef-
ficient (r) by the square root of trait genomic heritability’>** (Table 2).
This was the case for leaf appearance rate (r=0.58, n=302, p-value <
2.2E-16, CVrumse = 5.2% in Fig. 1c), leaf expansion rate (r=0.76, n =302,
p-value < 2.2E-16, CVrymse =8.7% in Fig. 7a), rhpap (r=0.65, n=302, p-
value < 2.2E-16, CVrmse =9.4% in Fig. 3e) and stomatal conductance
(r=0.56, n=302, p-value < 2.2E-16, CVguse = 8.4% in Fig. 5b) (Supple-
mentary Table 5). These values are similar but slightly lower than those
for the duration of the vegetative phase in our study (r=0.84, n=302,
p-value < 2.2E-16, CVrmse =2.7% in Fig. 2¢), and for yield or flowering
time traits in other studies®**~°. Notably, genomic prediction with
G-BLUP model performed similarly for the genotypes originating from
the two panels, in spite of the difference in structure and origins of
these panels (Supplementary Fig. 5) and the fact that measurements
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Fig. 5 | Stomatal conductance can be measured at plant level in an indoor
phenotyping platform and predicted from genomic information. aComparison
between values obtained at leaf level via gas exchange, and at plant level via
inversion of the Penman-Monteith equation™, in well-watered and water deficit
treatments. b Comparison of observed mean genotypic values and mean (G-BLUP)
predicted values in a 5-fold cross-validation scheme with 10 iterations for plant
stomatal conductance. In a and b, each symbol, one genotype; blue, well-watered;
red, water deficit. In a, black line, linear regression. In b, black line is the 1:1 line. In
a, r=0.92 (95% Cl=0.83-0.96), n =26, df = 24, p-value = 2.4E-11, CVrmse = 13%. In
b, r=0.56 (95% Cl=0.47-0.63), n=302, df =293, p-value < 2.2E-16, CVrysg = 8.4%.
Significance of the correlation coefficients was tested using two-sided t-test. For
rho and other statistics, see Supplementary Table 5. Source data are provided as a
Source Data file.

were performed in different experiments. Furthermore, when pre-
dicting traits with a PC-BLUP model that is used as predictors the
genotypes coordinates on the first five axes of SNP PCoA (Principal
Coordinate Analysis) of the panels (Supplementary Fig. 5), the pre-
diction quality decreased when considering individual clouds of points
corresponding to each panel (Supplementary Fig. 6 and Supplemen-
tary Table 6).

The range of G-BLUP predicted values was expectedly smaller, for
all tested traits, than that of observed values. This bias is linked to the
fact that the narrow-sense heritability estimated using genomic addi-
tive and dominance relationships of studied traits was lower than 1
(0.68-0.82, 0.56-0.63, 0.54-0.62, 0.54-0.74, and 0.48-0.53 for the
duration of the vegetative phase, LAR, leaf expansion rate, rhpap and

stomatal conductance, respectively, Table 1). Hence, the prediction
based on genomic information covered a smaller range of values than
original data.

The external validation was a more challenging scheme, where we
tried to predict the performance of new genotypes evaluated in new
independent experiments. Moreover, the ‘recent hybrids panel’ used
here covered smaller ranges of trait phenotypic values than those in
the ‘diversity’ and ‘genetic progress’ panels considered jointly. Con-
sequently, the comparison of observed vs G-BLUP predicted values led
to lower prediction accuracies than in the case of cross-validation (r
ranged between 0.34 and 0.71, Table 2). This applied to traits mea-
sured indoor (LAR, Fig. 1d, LER, Fig. 7b and rhp,p, Fig. 3f) as well as for
the duration of the vegetative phase measured in the field (Fig. 2d and
Supplementary Table 5), so this problem was not specific of indoor
genomic prediction. The external validation using the simple PC-BLUP
model resulted in much lower prediction accuracies than that using
the G-BLUP model (Supplementary Fig. 6 and Supplementary Table 6).
This suggests that G-BLUP predictions captured genetic effects
beyond that explained by population structure.

Discussion

Three conditions can be considered as requirements for traits mea-
sured indoor to be used in trait-based selection in a context of climate
change. Firstly, traits measured indoor should be genetically corre-
lated to those in fields (regardless of absolute values either indoor or in
eachfield), soindoor breeding is relevant to field conditions. Secondly,
the absolute value of indoor traits should translate to that in fields with
diverse climate scenarios, either directly or via models. Finally, indoor
traits need to be predicted with sufficient accuracy from the genomic
information of non-phenotyped genotypes.

The traits presented here satisfied the first condition. Close cor-
relations were observed between the genotypic values of traits mea-
sured indoor and in multi-site field experiments. This was the case
when the considered trait was measured with similar protocols indoor
or in the field, for instance leaf appearance rate or the duration of the
vegetative phase. It was also the case when the trait was measured with
different methods as in the case of plant architecture. Finally, the
integrated trait LAI, which is highly dependent on the plant density and
environmental conditions in the considered canopy, required a
method involving crop modeling. The correlations observed in these
three cases between indoor platform and fields are therefore higher
(r=0.57 to 0.77, Table 2) than those reported by Poorter et al.** for a
set of growth-related traits meta-analysis (median r = 0.51). Two rea-
sons may explain this disparity. (i) Traits considered in Poorter’s meta-
analysis, namely yield, leaf nitrogen concentration and specific leaf
area are more integrated than those studied here (except LAI) and,
therefore more prone to high genotype x environment interactions
and changes in the ranking of genotypes. (ii) The traits studied here
had moderate to high heritabilities over experiments, thereby showing
a low residual variance resulting from experimental errors. Further-
more, measuring yield, yield components, or leaf area index in phe-
notyping platforms is probably not relevant because these traits result
from cumulative processes over a long period, during which condi-
tions indoor are very different from those in the field. The methods
presented here for comparing indoor and field trait values con-
siderably reduced the genotype x environment interaction (GEI) for
such integrated traits. For example, a direct comparison of LAl indoor
and in the field resulted in a high GEI, without correlation between
them. Conversely, the GEI was largely reduced when upstream traits
measured indoor (with a low GEI) were combined, via a crop model,
with the management practices and environmental conditions in the
considered field”.

The second condition, namely that trait values can translate from
indoor conditions to a diversity of fields, was fulfilled for the traits
reported here if the differences in environmental conditions were
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Fig. 6 | Leaf width and length responded similarly to environmental conditions
in fields and indoor platforms. a Relationship between leaf width and the
cumulated light intercepted by plants during leaf widening. b Relationship between
leaf length and leaf-to-air vapor pressure deficit (VPD;,: mean of maximum daily
values) during leaf elongation. Each point, one experiment and leaf rank. Leaf width
and length values of four leaf ranks (8-11, circles, squares, diamonds and triangles,
respectively) were corrected for leaf rank so equivalent values for leaf 8 are
presented**. Blue dots: field, red dots: indoor platform. Black lines, linear regres-
sions. In a, r=0.83 (95% Cl=0.73-0.89), n =64, df = 62, p-value < 2.2E-16. In

b, r=-0.62 (95% Cl=-0.78-0.40), n = 44, df = 42, p-value = 6.2E-06. Significance of
the correlation coefficients was tested using two-sided t-test. Source data are
provided as a Source Data file.

taken into account, thereby dealing with the GEI via a previously
reported model’’.

* Modeling temperature effects allowed consistency between
field and platform experiments for leaf appearance rate and the
duration of the vegetative phase in this study. This result can be
generalized to traits related to the progression of plant devel-
opment of many species. In particular, germination rate, leaf
appearance rate, the reciprocal of the duration of growth of
individual leaves and reproductive organs are commonto a large
range of environments if they are expressed in thermal time”.
Crop models, based on this result, successfully predict plant
phenology in wide ranges of environments®*’.

* The amount of intercepted light was also needed for other traits
to be consistent between experiments. This was the case here for
maize leaf width measured indoor and in several fields. Beyond
this particular trait, Monteith showed that biomass accumula-
tion is proportional to the cumulated light intercepted by
plants*. In particular, we showed that, in a series of experiments
with maize, the time course of plant biomass largely differed
between experiments but was consistent if expressed as a
function of intercepted light'®. Again, crop models based on
intercepted light can predict plant biomass accumulation with
reasonable accuracy®**®.

* Plant water status was, in addition, necessary to account for
differences in traits related to organ expansive growth (expres-
sed in terms of volume or length). Its effect can be predicted
from the cell scale’® to the organ scale®® % Here, this was the
case for leaf length in well-irrigated maize fields, as a function of
air VPD. Leaf elongation rate is closely related to a combination
of soil water potential and VPD in maize, fescue, or barley®®**, so
our result can probably be extended to other species. Stomatal
conductance can also be predicted from a combination of soil
water status, evaporative demand, and incident light via
functional models involving chemical and hydraulic signals®*.
Crop models that take into account light, soil water content and
evaporative demand can predict stomatal conductance and net
photosynthesis by simulating physiological processes®*°¢, so
photosynthesis in controlled conditions can be extended to a
range of field conditions®®.

Overall, we confirmed that raw phenotypic traits cannot translate
directly from indoor platforms to fields, as reviewed in Poorter et al.?*.
However, taking into account specific environmental conditions
allowed this translation for the traits presented here, which depend on
one or two environmental conditions. Again, more integrated traits
such as leaf area index, grain number or grain yield measured in a
platform cannot be directly extended to field via simple relationships
as presented in former paragraphs. These traits can be predicted in a
range of field conditions based on genotype-specific parameters and
environmental conditions measured in the considered fields. This was
the case here for leaf area index, but was also the case for grain number
and grain yield in a multi-site field experiments, based on a mixed
model involving genetic parameters and environmental conditions®.

The third condition is that traits can be predicted from genomic
information. Here, cross-validation based on a large genetic range
showed good results (compared to Guo et al.*, Yuan et al.”, or Toda
et al.”"), with r ranging from 0.56 to 0.84 for the studied traits (Table 2
and Supplementary Table 5). External validation on the panel of recent
hybrid varieties provided less accurate results, but correlations
between predicted and observed values still ranged from 0.34 to 0.71
and mostly with significant p-values (from 1.5 E-10 to 0.14) and
acceptable CV of errors (from 2.5% to 15.6%) (Supplementary Table 5).
By using this panel for external validation, we chose the most chal-
lenging case, in which one attempts to use a genomic prediction
model, trained with a panel with wide genetic variability, to predict
elite genotypes that have a reduced phenotypic variability for studied
traits. Hence, our results could not be considered as fully satisfactory if
the purpose was to rank elite genotypes (Supplementary Table 5).
Conversely, the cross-validation in a wider genetic range suggests that
genomic prediction may be used for identifying genotypes with high
or low genotypic values for studied traits in breeding populations with
higher genetic and phenotypic variabilities. This allows the design of
ideotypes with contrasting strategies in relation to water and heat
stress, namely ‘conservative’ ideotypes with low stomatal con-
ductance, leaf growth, leaf appearance rate, for stress-prone areas, vs
‘spender’ ideotypes with highest values for each of these traits.
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Fig. 7 | Maximum leaf expansion rate (LER) could be predicted from genomic
information via cross-validations in panels with large phenotypic variability
but predictions were not accurate for the independent dataset. a Comparison
of observed mean genotypic values and mean (G-BLUP) predicted values in a 5-fold
cross-validation scheme with 10 iterations for plant max leaf expansion rate (LER).
b Comparison of observed mean genotypic values and predicted values for

the recent hybrids dataset, with G-BLUP model calibration made using dataset of
a. LER (Leaf Expansion Rate) was extracted from time courses of leaf area in the
platform'* and determined as the slope of the linear regression between leaf area
and thermal time during the period from 24 to 45 dg-c. In a, purple empty circles,
diversity panel; red and yellow empty circles, genetic progress panel, hybrids
released before 1980 and 2000, respectively; green empty circles, hybrids released
after 2000. In b, light blue circles, mid-early hybrids (G2), dark blue squares,
intermediate hybrids (G3), red triangles, mid-late hybrids (G4). In a, r=0.76 (95%
Cl=0.71-0.82), n =302, df =297, p-value < 2.2E-16, CVgyse = 8.7%. In b, r=0.34 (95%
Cl=-0.12- 0.68), n=20, df=18, p-value = 0.14, CVryse = 14.1%. Significance of the
correlation coefficients was tested using two-sided t-test. For rho and other sta-
tistics, see Supplementary Table 5. Source data are provided as a Source Data file.

Methods

Genetic material

Three panels of maize hybrids were used in this study (Supplementary
Table 1). First, a diversity panel included 246 hybrids resulting from the
cross of a common flint parent (UHOO07) with 246 dent lines that
maximized the diversity in the dent group while keeping a restricted
flowering window**’. This panel involved four genetic groups, namely
lodent (39 hybrids), Lancaster (45 hybrids), Stiff-Stalk (55 hybrids), and
diverse-dent hybrids (107) consisting in an admixture of the former
three groups®’. Second, a ‘genetic progress’ panel included 56 highly
successful commercial hybrids released on the European market from
1950 to 2015°. This panel showed a limited range of maturity classes,

from mid-early (FAO 280) to mid-late (FAO 480), covering the largest
growing area in Europe. Finally, a ‘recent hybrids’ panel included 86
commercial hybrids released from 2008 to 2020, belonging to mid-
early to mid-late maturity classes (Supplementary Data 1). Yield data in
30 sites x 2 years per hybrid were available at the beginning of this
study (ARVALIS, www.varmais.fr).

Platform experiments

Platform experiments were performed in PhenoArch, an indoor
robotized and image-based phenotyping platform that allows precise
measurement of plant architecture, plant phenology and growth,
transpiration, stomatal conductance and water use efficiency (https://
wwwé.montpellier.inrae.fr/lepse/Plateformes-de-phenotypage-M3P/
Montpellier-Plant-Phenotyping-Platforms-M3P/PhenoArch)™ hosted at
Montpellier Plant Phenotyping Platforms (M3P). The diversity panel
was evaluated in four experiments (in spring 2012, 2013, and 2016, and
winter 2013) as described in Prado et al.'“. Three or two plants per
hybrid were grown depending on the experiment (Supplementary
Table 1). The ‘genetic progress’ panel was evaluated in four experi-
ments, with most data used here originating from an experiment with
seven replicates per hybrid®. A subset of 20 hybrids of the ‘recent
hybrids’ panel was evaluated in one experiment during winter 2021,
with three replicates per hybrid. All experiments followed an alpha-
lattice design, with two levels of soil water content imposed, namely
retention capacity (well-watered, soil water potential of —0.05 MPa)
and water deficit (soil water potential from -0.3 to -0.6 MPa
depending on the experiment). Soil water content in pots was main-
tained at target values by compensating transpired water three times
per day via individual measurements of each plant’. Soil water
potential was estimated from soil water content based on a water
release curve'. Air temperature and humidity were measured at six
positions in the platform every 15 min. Daily incident photosynthetic
photon flux density (PPFD) over each plant within the platform was
estimated by combining a 2D map of light transmission, and the out-
side PPFD measured every 15 min with a sensor placed on the green-
house roof'®. The greenhouse temperature was maintained at 25 + 4 °C
during the day and 17 + 2 °C during the night. Supplemental light was
provided either during daytime when external solar radiation was
below 300 Wm™ or to extend the photoperiod by using 400 W HPS
Plantastar lamps.

In each experiment, the number of visible leaves of every plant
was manually scored weekly during the vegetative phase. Leaf
appearance rate (LAR, reciprocal of the phyllochron) was calculated as
the slope of the linear relationship between the number of visible
leaves and thermal time, during the period from plant emergence to
12-leaf stage. Red-Green-Blue (2056 x 2454) images taken from 13 views
(12 side views from 30° rotational difference and one top view) were
captured daily for each plant during the night. Plant pixels from each
image were segmented from those of the background and used for
estimating the whole plant leaf area and fresh biomass®®. The time
courses of leaf area and plant fresh biomass were then fitted indivi-
dually by using P-spline growth curve models®’. The architectural trait
rhpap Was calculated daily from 3D reconstructions of each plant,
based on RGB images at PhenoArch platform®. rhpsp index repre-
sented the point in the distribution of leaf area along the stem (from
the top of the plant, relative to total plant height) where half of the
cumulative leaf area is reached. Whole-plant stomatal conductance
was calculated over 4 time-periods per day for 20 days for each hybrid
plant in PhenoArch platform, via inversion of the Penman-Monteith
equation based on transpiration, plant growth, net radiation and VPD
collected in the experiment'. Its value under saturating light was
estimated for each hybrid by combining coupled values of stomatal
conductance and incident light observed in all experiments. The
maximum leaf expansion rate (LER) was extracted from time courses
of leaf area in the platform and corresponded to the maximum first-
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order derivative of P-spline fitted growth curves from 24 to 45 days at
20°C after emergence®. Because this method provided somewhat
unstable results, we also calculated maximum LER as the slope of the
linear regression between leaf area and thermal time during the whole
period from 24 to 45 days at 20 °C.

Genotypic values (BLUEs) for each trait were estimated by cor-
recting raw traits values for spatial effects, by fitting a mixed model (R
package SpATS’,), with a fixed term for genotype and random effects
for rows and columns as well as a smooth surface defined on row and
column coordinates. Broad-sense heritabilities were calculated daily
with the same R package, using the same model but with the genotype
effect included as a random term. Regarding longitudinal traits, gen-
otypic values at individual time points, t, were obtained from their
smoothed time series using a generalized additive model fitted to the
spatially adjusted daily measurements, y; (), for each plant k of gen-
otype i:

Vi =a; +f () + € (0),€4(E) ~ N(0,0%) @

where q; is a genotype-specific intercept, f; (t) is a genotype-specific
thin plate regression spline function on time, and €; (t) is a random
error term (R package statgenHTP®*").

Genomic heritability (narrow-sense, h,?) was estimated for each
trait, panel and experiment with a model considering genomic-based
additive and dominance relationship matrices’, using the R package
“BGLR"”.

Field experiments

The diversity panel was grown in 25 experiments (defined as combi-
nations of site x year x water regime), either rainfed or irrigated, in ten
sites in 2012 or 2013%. Sites were distributed on a west-east transect
for temperature and evaporative demand, across Europe at latitudes
from 44° to 49° N. The ‘genetic progress’ panel was grown in 26 field
experiments either rainfed or irrigated, in 16 European sites from 2010
to 2017 spread along the same climatic transect as for experiments
with the diversity panel’. The ‘recent hybrids’ panel was grown in four
field experiments under irrigated conditions in the same range of
latitudes, in 2021 or 2022 in France (Supplementary Table 2). Experi-
ments followed an alpha-lattice design or randomized complete block
design (RCBD) and were split by varieties maturity classes (Supple-
mentary Table 2), each with three replicates of four-row plots, 6m
long. The targeted plant density was 9 plants m™. In all experiments,
anthesis and silking dates were scored by visiting experiments every
third day. The number of appeared leaves was scored every week on
ten plants per hybrid during the vegetative phase, and leaf appearance
rate was calculated as in indoor experiments (Supplementary Table 2).

The duration of the vegetative phase was defined as the period
from plant emergence to anthesis, expressed in thermal time
(equivalent days at 20 °C)*®, Leaf appearance rate was estimated as in
platform experiments.

UAV flights were performed three times in one experiment of the
‘genetic progress’ panel during the period from plant emergence to
flowering, and seven times in two experiments for the ‘recent hybrids’
panel during the same period (Supplementary Table 2). Quadcopter
drone (DJI Phantom 4) were equipped with a DJI multispectral camera
with 5.7 mm focal length lens, acquiring 1600x1300 pixel images. They
flew at a controlled altitude of 20 m and a constant speed of 2.2ms™
for about 20 min per flight, with images captured at a one-second
interval. Flights were performed during clear and cloudless days
between 8:00 and 10:00 solar time. An automatic image-processing
pipeline was applied by Hiphen, Avignon, France (http://www.hiphen-
plant.com), following methods presented in Blancon et al.*°. Environ-
mental variables were recorded every hour in all experiments,
including light, air temperature, relative humidity (RH), rainfall and
wind speed. Soil water potential was measured every day with

tensiometers at 30 and 60 cm depths with three or two replicates,
located in plots sown with a common reference hybrid.

The architectural trait ALA (Average Leaf inclination Angle to the
soil level) and Leaf Area Index (LAI) were calculated by inversion of the
PROSAIL model*’*, based on multispectral images of field UAV flights.
The PROSAIL model couples the PROSPECT leaf optical properties
model with the SAIL canopy bidirectional reflectance model. It links the
spectral variation of canopy reflectance, which is mainly related to leaf
biochemical contents, with its directional variation, which is primarily
related to canopy architecture and soil/vegetation contrast”™. This link
allows simultaneous estimation of canopy biophysical/structural vari-
ables from remote sensing, including ALA and LAI traits**”°.

Leaf area index was also calculated by using a crop model (APSIM
model as modified in Lacube et al."') parameterized with the genotypic
values (BLUEs) of four traits measured in PhenoArch platform (LAR,
maximum leaf growth rate, response of leaf growth rate to VPD and
final leaf number), plus the environmental and growing conditions
recorded in the considered field.

Spatial corrections, calculations of genotypic values and herit-
abilities of traits were performed with the same methods as in indoor
experiments.

Correlation analysis between experiments

Pearson (r) and Spearman (rho) correlation coefficients were calcu-
lated to evaluate to which extent the genotypic values (BLUESs) of traits
match between experiments, either in one field and another one, or in
one field and the indoor platform. Both types of correlations was
performed on the hybrids that were common to considered experi-
ments (common hybrids number ranged from 18 to 56, Supplementary
Data 1 and Supplementary Table 4). The significance of correlation
coefficients was evaluated based on the null hypothesis that there is no
correlation between the variables (r or rho = 0). Genetic correlations
(rg) between experiments were also assessed, using a multivariate
Bayesian Gaussian mixed model, fitted for each couple of experiments
(bivariate analysis, Table 2), with MTM R package®**°. Model fitting was
based on 60,000 iterations, after discarding 10,000 cycles for burn-in
period and using a thinning rate of 5. Each multivariate model imple-
mented had the form:

Vst Zg @i+ Zyd; + € 2

where the subscript i refers to experiments (two experiments analyzed
jointly, with trait values measured either indoor and in a field or in two
different fields, Table 2), y; is the vector of trait values (BLUEs) of n
hybrids in the considered couple of experiments, y; is the overall mean
(intercept), a; is the vector of random additive genetic effects, d ; is the
vector of random dominance effects and ¢; is the vector of random
residual effects. Z,; and Z; are the incidence matrices fora;and d ;,
respectively.

Variance components were calculated assuming: a ; ~ MVN (0,
Ga®V,) with G, as the genomic-based additive relationship matrix
described below and V, as the additive effects variance-covariance
matrix, d ; ~ MVN (0, Gp®V,4) with Gp, as the genomic-based dominance
relationship matrix described below and V4 as the dominance effects
variance-covariance matrix, & ~ MVN (0, I®R) where | denotes the
identity matrix and R is the residual effects variance-covariance matrix.

Standard errors (SE) of all correlation coefficients were estimated
using Bonett and Wright approximations”. Additionally, the theoretical
accuracy of indirect selection (iAcc), i.e. in case of an indirect pheno-
typic selection based on observed values in a given experiment (indoor
or in a field), was calculated as the genetic correlation between the
considered couple of experiments, multiplied by the square root of
trait genomic heritability in the reference experiment for selection™
(Supplementary Table 4). Then, we quantified the efficiency of indirect
selection relative to a direct phenotypic selection in the targeted
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environment (Eff), by dividing the accuracy of indirect selection by the
square root of trait genomic heritability in the target field experiment®.

Root mean squared error of estimations (RMSE) and bias showing
the discrepancy between experiments genotypic values (BLUEs) were
calculated too. We present them as a coefficient of variation of the
error (CVrmsp) or bias (CVpi,s), which is the RMSE or bias expressed as a
percentage of the mean value. Finally, to appreciate the consistency
between experiments of the highest and lowest genotypic values, we
evaluated the frequency of similar assignment to the highest or the
lowest quartile between experiments for each trait. This consisted of
estimating how many hybrids of the highest quartile of one experi-
ment were also present in the highest quartile of the other experiment
(Supplementary Table 4). The same was performed for the lowest
quartile.

Genotypic data and diversity analyses
All panels were genotyped using the 600 K Affymetrix® Axiom® array’s.
Genotypes of the hybrids were either inferred from genotypes of the
parental lines (diversity panel) or resulted from the direct genotyping
of the hybrids (genetic progress and recent hybrids panels). After
quality control, 440,000 polymorphic SNPs were retained for diversity
analyses and genomic prediction (excluding SNPs with minor allele
frequency lower than 0.05 and/or missing values for more than 20% of
hybrids). Missing values were otherwise imputed using BEAGLE v3”.
Genotypic data generated were organized as M matrices with N
rows and L columns, N and L being the panel size and number of
markers, respectively. Genotype of hybrid n at locus (SNP marker) j
was coded as O (the homozygote for B73 line allele), 1 (the hetero-
zygote) or 2 (the other homozygote). “snpReady” R package®® was
used to estimate observed heterozygosity as

1L
Ho= 7>, (nH;/N) 3)

and Nei’s index of genetic diversity as
. _ 1 L 2 2
Nei_GD = i /ZHQ -p?—1-p)) “4)

with N the number of hybrids, nH; is the number of heterozygous
hybrids at the jth biallelic locus, L is the total number of loci, and p; is
the frequency of the reference (B73 line allele) at locus j (Supple-
mentary Table 7). Principal Coordinate Analysis (PCoA) was also per-
formed on SNP markers data (Supplementary Fig. 5).

Genomic prediction models

Genomic predictions of each trait was performed with a genomic best
linear unbiased prediction model (GBLUP-AD), including random
additive and dominance effects:

y=ul,+Z,a+Z,d+e )]

where y is the vector of trait genotypic means (BLUEs over experiments)
of n hybrids, u is the overall mean (intercept), a is the vector of random
additive genetic effects, and is assumed to follow a normal distribution
~ N (0, Go0,%) with G, as the genomic-based additive relationship matrix
described below and 0,2 as the additive genetic variance; d is the vector
of random dominance effects which follows a normal distribution ~ N
(0, Gpog®) with Gp as the genomic-based dominance relationship matrix
described below and o4 as the dominance genetic variance; € ~ N (0,
lo:2) is the vector of random residual effects, where | denotes the
identity matrix and o is the residual variance. Z, and Zq are the
incidence matrices for a and d, respectively.

The genomic-based relationship matrices were built as defined in
Vitezica et al.”> and Gonzalez-Diéguez et al’. The genomic-based

additive relationship matrix (G,), called realized relationship matrix
was estimated as

_ HH,/
A" tr(H,H,)/N ©
where H, is a rescaled genotype matrix H,=M-P, where M is the
genotype matrix coded as 0, 1, and 2 for genotypes BB, Bb and bb
respectively and with dimensions number of hybrids (N) by number of
loci (L); P is the matrix of locus scores 2p;, with p; being the reference
allele frequency of the j™ SNP biallelic locus (having alleles B/b); tr is
the trace. The genomic-based dominance relationship matrix (Gp) was
estimated as

H.H,/

b~ tr(HyHy')/N @

where Hy is the matrix containing elements hy for each individual and
locus equal to:

-1
—2PgpPos [pBB +Ppy — (Pps — pbb)z]

BB
-1
ha=1 4pgsPus {pBB *+Ppp — (Ppp — Pbbﬂ for genotypes{ Bb
-1 bb
—2PppPss {pBB +Ppy — (Pog — Pbb)z}
®)

where pgg, pPeb, and pyp, are the genotypic frequencies for the geno-
types BB, Bb, and bb respectively at the locus.

For moderate heritability physiological traits (LER and gSy.,), in
addition to random additive and dominance effects estimated from
genomic-based relationship matrices, the genotypes of markers asso-
ciated to quantitative trait loci (QTLs), previously identified in a
genome-wide association study (GWAS) of the diversity panel*, were
added as fixed effects in prediction models:

Y=il, +XB+Za+Z,d+e )

where X is an n x | marker genotype matrix for n hybrids and I markers
associated to trait QTLs and B is the markers fixed effects vector.

To test if G-BLUP model predictions are capturing genetic effects
above that explained by population structure, we fitted a simple PC-
BLUP model to the same data. In this model, the genotypes coordi-
nates on the first five axes of SNP PCoA of the panels (representing of a
cumulative percentage of variance of 35%), were used as predictors.
Other genomic prediction models (RR-BLUP, BayesB, BayesC, and
BayesR) were also tested but showed no significantly better results
than those presented in this paper.

All prediction models were fitted using the Bayesian Generalized
Linear Regression (BGLR) R package”, based on 60,000 iterations,
after discarding 10,000 cycles for burn-in period and using a thinning
rate of 5.

Training and validation schemes of genomic predictions

Genomic predictions were first evaluated by a 5-fold cross-validation
scheme (CV1) repeated 10 times, applied to diversity and genetic
progress panels datasets. In CV1, we aimed to measure the ability of the
models to predict the performance of hybrids that would not have
been evaluated in any of the observed environments®. For each
iteration, the two panels genotypes were split into 5 subsets, then each
subset (one fifth) was predicted using the remaining four fifths as
training set. This generated a total of 5 x 10 testing sets. Each training
set was sampled randomly but proportionally to ‘diversity panel
genetic groups and across years of release of ‘genetic progress” hybrids
(Supplementary Fig. 4). This sampling method was chosen to maintain
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a good coverage of the total genetic space covered by the training
set®. The ‘recent hybrids’ panel dataset was then considered as an
external validation of the prediction models. Here, the ‘diversity’ and
‘genetic progress’ panels were used together as training set, and pre-
dictions were made for the recent hybrids observed in independent
experiments.

Five statistics were calculated to assess the performance of pre-
diction models for each trait: the Pearson (r) and Spearman (rho)
correlation coefficients between observed genotypic means (BLUEs
over experiments) and predicted values (G-BLUPs), the prediction
accuracy of genomic selection (Acc, estimated as the predictive ability
(r) divided by the square root of trait genomic heritability™), the root
mean squared error of predictions (RMSE) showing the discrepancy
between predicted and observed values and the coefficient of variation
of the error (CVrmsg), which is the RMSE expressed as a percentage of
mean observed value. For cross-validation scheme, the statistics esti-
mations were performed within each fold and then averaged across
folds and iterations. Standard errors (SE) of correlation coefficients
were calculated using Bonett and Wright approximations””.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The data generated in this study have been deposited in the Recherche
Data Gouv database [https://recherche.data.gouv.fr/fr]. The datasets
for phenotypic and genotypic values for the diversity panel are avail-
able at https://doi.org/10.15454/IASSTN. The datasets for phenotypic
and genotypic values for the genetic progress panel are available at
https://doi.org/10.15454/KLDOGH. The dataset for the ‘recent hybrid’
panel is available at https://doi.org/10.57745/NZYIKL. Source data are
provided with this paper.
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Supplementary Table 1. Panels of hybrids and corresponding experiments with
analysed traits in this study.

Indoor Used traits Field Used traits

Hybrid
Panel »;nberComposition experiments inindoor experiments in field More infoin
number experiments number experiments
246 dent LAR, LER, gs Duration of
. _ _ P 5 BS vegetative https://doi.org/10.1038/s41588-
Diversity 246 lines x flint 4 rheap, Leaf 25 hase Leaf 0190414
line UHO07 dimensions p‘ " e
dimensions
LAR, LER
Successful ’ » 85 )
hybrids rheap, LER Duration of
Genetic sensitivity to egetative
“ 56 released 4 tvity 26 VEBELALVE -\ tps://doi.org/10.15454/KLDOGH
progress VPD & SWP, phase, ALA,
from 1950 Final leaf LAI
to 2015
number
Recent
. Duration of
Recent hybrids LAR, LER vegetative
hvbrids 86 released 1* rh, ’ 4 hagse LAR https://data.inra.fr/dataset.xhtml?
y from 2008 PAD P LA bersistentid=doi:10.15454/IASSTN
to 2020

*One indoor platform experiment with a subset of 20 recent hybrids. LAR: Leaf Appearance Rate. LER:
Leaf Expansion Rate. gs: Stomatal Conductance. rh,, . relative height at 50% of leaf area. Leaf

dimensions: length and width. VPD: Vapour-pressure deficit. ALA: Average Leaf inclination Angle. LAI:
Leaf Area Index. Detailed information for hybrids and experiments used for the diversity panel and the
genetic progress panel are available at the URLs provided in this table.
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Supplementary Table 2. Experiments performed for the ‘recent hybrids’ panel
and Experiments carried out at Field 5, Field 6 & Indoor for ‘genetic progress' panel

N T GPS # Maturi M d
Panel ame Ype Location Year Treatment aturity easlure
exp. exp. Coord. Hyb groups traits
LAR, Emergence, Anthesis
48.401 & Silking dates, Leaf 6
Field 1 Field Matzenheim ?'51?' 2022 WwWw 53 G2,G3 dimensions, Plant density,
' Final leaf number, Yield &
its components
ALA, LA, fiPAR, Emergence,
. Anthesis & Silking dates,
Field2  Field ~SontBonnet 45714, ) Ww,WD 58  G3,64  Plant density, Final leaf
de Mure 5.046 . .
number, Yield & its
components
Recent
hybrids LAR, Emergence, Anthesis
& Silking dates, Leaf 6
panel 47.919, G2,G3, .
Field 3 Field Binas 1.478 2022 WwWw 86 G4 dimensions, Plant density,
' Final leaf number, Yield &
its components
45.741, ALA, LAI, fiPAR, E s
Field4  Field  Pusignan 2021 Ww 54  G3,G4 ' mergence
5.075 Plant density
Leaf area, Biomass, LAR,
Ind 43.618, G2, G3, .
Indoor1 . 0" Montpellier 2021 WW,WD 20 LER, Plant architecture
Platform 3.857 G4 .
variables (rhg,p)
ALA, LA, fiPAR, Emergence,
| . . 13611, G2, G3, Anthesis & ISI“’.II:Ig dates,
Field 5 Field Mauguio 3.971 2017 WW, WD 56 Ga Plant density, Final leaf
' number, Yield & its
components
Genetic LAR, Emergence, Anthesis
43.610, G2, G3, & Silking dates, Plant
progress | Field6  Field  Mauguio 2010 WW, WD 44 >ITIng dates, Fan
panel 3.980 G4 density, Final leaf number,
Yield & its components
Leaf area, Biomass, LAR,
ind 13,618 a2 63 LER, gs, Plant architecture
naoor . . 'y ¥ ¥ =
Indoor 2 Platform Montpellier 3.857 2017 WW, WD 56 G4 valrllafnles (rhpan), LER
sensitivity to VPD & SWP,
Final leaf number

Name exp. : Experiment name used in the text; Year, year when the experiment was done.
Treatment : WW, imposed well-watered (controlled by sensors). WD, imposed water deficit
(controlled by sensors)
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Supplementary Table 3. Summary of variance components and genomic heritability
estimated in the experiments considered in this study

. . . # Mean 2 2 2 2 2
Traits Unit Experiments Hyb value h, a, o, Oy o,
Indoor 2 44 0275 064 1.9E-04 1.1E-04 8.0E-05 1.1E-04
Field 6 44 0281 061 7.7E-04 4.3E-04 3.3E-04 4.9E-04
Leaf Appearance | Indoor 1 21 0271 058 2.76-04 1.4E-04 1.3E-04 2.0E-04
20°C
Rate (LAR) Field 3 26 0260 053 1.5E-04 7.6E-05 7.2E-05 1.3E-04
Field 5 44 0287 064 4.6E-04 2.8E-04 1.8E-04 2.6E-04
Field 1 26 0262 053 1.3E-04 6.3E-05 7.1E-05 1.2E-04
Field 5 44 635 068 952 629 323 457
Field 6 44 626 068 1155 777 378 5239
Duration of th
uration ot e Gays e Field 1 53 638 062 388 194 194 239
vegetative phase
Field 3 55 629 058 323 169 154 237
Field 2 55 682 062 324 160 165 196
rhpap INdoOT 2 56 0277 0.69 1.3E-03 9.1E-04 4.4E-04 6.1E-04
rheso (relative height ALA Field 5 56 5433 070 205 138 067 087
at 50% of leaf area) rhpap
VS (unitless),  rhps Indoor 1 18 0344 054 1.1E-03 5.8E-04 55E-04 9.5E-04
ALA (Average Leaf ALA (%) )
inclination Angle) ALA Field 4 18 6724 056 084 043 040 067
ALA Field 2 18 6027 057 319 164 155 242
LAl Indoor 2
Leaf Area Index (+Crop model) 51 362 063 034 022 012 020
(LAI)
unitless LAl Field 5 (UAV) | 51 367 068 011 007 004 005

. 2 . - 2 : . 2 2 _
#Hyb, number of hybrids. h_, genomic heritability. o, total genetic variance. o, and o, , variances
9 g a d

explained by additive and dominance relationship matrices, respectively. g, , residual variance.
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Supplementary Table 4. Summary of correlation analysis and accuracy results
estimated between experiments genotypic values for four traits

M Mean FSA tothe F5A tothe
Traits Unit Experiments r rho RMSE CWgee  Bias CVgias highest lowest iAcc
Hyb value . !
quartile quartile
Indoor 2 VS 0.73 0.68 0.55
Field 6 a4 +0.07 +0.09 0.275 0.025 9.0% 0.006 2.1% 0.63 0.72 to11
Indoor 1 VS 0.57 0.42 0.33
Field 3 21 +016 +0.20 0.259 0.020 7.7% -0.012 -4.5% 0.60 0.40 1021
Leaf Appearance leaf/ da
Rate (LAR) e Field 5 Vs Field 071 043 0.52
iel iel . . .
6 44 +0.08 +0.13 0.287 0.024 84% -0.006 -2.0% 0.50 0.75 to11
Field 1 VS Field 0.49 0.35 0.30
X X . -0. -0. 0.50 0.33
3 26 +016 +0.19 0.260 0.014 5.3% -0.001 -0.3% £0.419
Field 5 VS Field 0.88 0.91 0.63
s a4 +0.04 +0.03 63.5 2.2 35% -095 -1.5% 0.81 0.72 £ 0.09
Duration of the Field 1 VS Field 0.69 0.66 0.47
d . - -
vegetative phase aysypec 3 53 +007 +0.09 61.7 2.7 4.4% 1.94 -3.2% 0.54 0.62 t041
Field 2 VS Field 0.47 0.37 0.31
3 55 +011 +0.12 64.1 4.5 70% -4.05 -6.3% 0.60 0.37 1012
rhpap Indoor 2 0.77 0.77 0.55
VS ALA Field 5 > +0.06 *0.06 0.28 071 057 +0.10
h lati hpap Indoor 1 0.58 0.51 Irrelevant (two different traits 0.33
e (relative Meao IREROT 18 0.34 ( 0.60 0.60
height at 50% of rhpan VS ALA Field 4 +0.17 +0.20 compared) +£0.23
leaf area) VS (unitless),
ALA (Average Leaf  ALA () rhpsp Indoor 1 0.60 0.60 0.37
inclination Angle) VS ALA Field 2 18 +0.17 +0.18 0.34 0-60 0.60 +0.22
ALA Field 4 VS 0.50 0.42 0.31
ALA Field 2 18 +019 +0.22 67.2 7.2 10.7% -6.97 -10.4% 0.60 0.60 +0.23
LAl Indoor 2
(+Crop model) 0.64 0.66 0.44
. . . J . 0.45 0.61
VS LAI Field °1 +0.09 +0.09 361 0.57 15.7% 0.0 1.7% +0.12
Leaf Area Index it S_WW (UAV)
(LAI) unitless
LAl Indoor 2
(+Crop model) 0.44 0.43 0.31
VS LAI Field 51 4011 +0.12 2.74 054 19.6% -0.20 -7.2% 0.33 0.50 1013
5_WD (UAV)

r, Pearson correlation coefficient. SE r, Standard Error of r. rho, Spearman correlation coefficient. SE rho,
Standard Error of rho. e. RMSE, Root Mean Square Error. CV,,.., RMSE Coefficient of Variation. CV

Bias Coefficient of Variation. FSA to the highest quartile, Frequency of Similar Assignment to the highest
quartile between experiments for each trait. FSA to the lowest quartile, Frequency of Similar Assignment
to the lowest quartile between experiments for each trait. iAcc, Theoretical accuracy of indirect selection,
i.e. in case of indirect selection based on trait observed values in a given experiment (indoor or in a field),
calculated as the genetic correlation between the considered couple of experiments multiplied by the

Bias’

square root of trait genomic heritability in the reference experiment for selection”’. Standard error (SE)
estimates’_ are shown after the + symbol.
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Supplementary Table 5. Summary of G-BLUP genomic prediction results in cross-
validation and external validation schemes

5-fold Cross-Validation External Validation
(Diversity and Genetic Progress panels) (Recent hybrids panel)
Trait Unit
Mean
# Mean  Mean Mean Observed oV # h RMSE Observed  CVppse
Hyb r rho RMSE mean value {;ﬁh;“ Hyb r mo mean value (%)
Leaf Appearance leaf/ 0.58 0.55 0.53 0.48
302 0.013 0.254 5.2 50 0.007 0.262 2.8
Rate (LAR) daysgec +0.09 +0.10 +0.10 £0.12
Durati fth 0.84 0.81 0.71 0.68
Hration ot te  javs,ee| 302 18 67.3 27 60 16 64.6 2.5
vegetative phase +0.04 £0.05 +0.07 +0.08
rh relative height 0.65 0.57 0.42 0.35
pao 8™ Unitless| 302 0.029  0.303 9.4 20 0.056 0.356 15.6
at 50% of leaf area) +0.08 +0.10 +0.20 £0.22
Stomatal
conductance mmol/ 302 056 033 9.30 110.40 8.4 Missing data
m?/s +0.09 +0.10 ' ' g
I:gsma)(}
Leaf Expansion Rate cmzf 302 0.76 0.75 1217 14012 8.7 20 0.34 0.34 2075  146.91 141
(LER) dayaoec +0.06 +0.06 ' ' +021 022 ' '
Mean r, Mean rho, Mean RMSE, Mean CV,, .. : Pearson & Spearman correlation coefficients, Root Mean

Square Error and RMSE Coefficient of Variation, respectively, estimated between G-BLUP predicted values
and measured values, averaged across folds and 10 iterations in a cross-validation scheme including

diversity and genetic progress panels. r, rho, RMSE, CV,, . : Pearson & Spearman correlation coefficients,

Root Mean Square Error and RMSE Coefficient of Variation, respectively, estimated between G-BLUP
predicted values (with training on diversity and genetic progress panels) and measured values in recent

hybrids panel, used as external validation. Standard error (SE) estimates’’ are shown after the + symbol.
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Supplementary Table 6. Summary of PC-BLUP model prediction results in cross-
validation and external validation schemes

5-fold Cross-Validation External Validation
(Diversity and Genetic Progress panels) (Recent hybrids panel)
Trait Unit
Mean
# M Mean Mean Observed oV # h RMSE Observed CVgpse
Hyb eant rho RMSE mean value [;555 Hyb r o mean value (%)
Leaf Appearance leaf/ 0.53 0.50 0.11 0.16
302 0.014 0.254 5.4 50 0.011 0.262 4.1
Rate (LAR) daysgec +0.10 =0.11 +0.14 +0.14
Durati fth 0.72 0.64 0.11 0.10
uration ot tne  javs,c| 302 23 67.3 34 | 60 2.7 64.6 4.2
vegetative phase +0.06 £0.09 +0.13 *0.13
h lative height 0.58 0.45 -0.21 -0.19
Mexo (relative height | L | 302 0030 0303 100 | 20 0.056 0356  15.7
at 50% of leaf area) +0.09 £0.11 +0.09 *0.11
Stomatal
conductance mmol/ 302 041 0.30 10.09  110.40 9.1 Missing data
m?/s +0.11 012 "~ . . 8
(8Smax)
Leaf Expansion Rate  cm?’/ 302 0.61 0.47 1526 14012 10.9 20 0.25 0.18 17.80  146.91 121
(LER) daysgec +0.08 +011 ' ' +0.23 024 ' '

Mean r, Mean rho, Mean RMSE, Mean CV,,,.. : Pearson & Spearman correlation coefficients, Root
Mean Square Error and RMSE Coefficient of Variation, respectively, estimated between PC-BLUP
predicted values and measured values, averaged across folds and 10 iterations in a cross-validation
scheme including diversity and genetic progress panels. r, rho, RMSE, CV,,,. : Pearson & Spearman
correlation coefficients, Root Mean Square Error and RMSE Coefficient of Variation, respectively,
estimated between PC-BLUP predicted values (with training on diversity and genetic progress panels)
and measured values in recent hybrids panel, used as external validation. Standard error (SE)

estimates ' are shown after the + symbol.

Supplementary Table 7. Diversity analysis of the studied panels using Nei’s index of
genetic diversity and observed heterozygosity level, based on 440 000 polymorphic
SNP markers.

Nei's Genetic Observed
Diversity Index Heterozygoty
(245 Parents et Lins) 045 000
(246 Hybriltjji::egtiet:ti?:i x UH007) 0.31 0.44
Gene';:eszgbrr?sz)Panel 0.36 0.38
Rece(r;'csH:f;:cEijsF)’anel 0.31 0.35
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CHAPTER 1

Supplementary Fig. 1. Time courses and broad-sense heritability over time of
genotypic values of the architectural traits (rh,5 and ALA) and their correlation heat

maps for 5 dates. a & b, Time courses of rh,,, observed in indoor plarform and ALA

observed in the field until flowering. ¢ & d, Broad-sense heritability over thermal time for
rhpap @nd ALA. e & f, Heat map of Pearson correlations between 5 thermal time points for

rhpap @nd ALA trait. rhp,p, relative altitude, from the top of the plant, where 50% of leaf area

is reached . ALA: average leaf inclination angle estimated from UAV images, via inversion

42,75

of the model PROSAIL
significant correlations are shown with an asterisk.

.Ina &b, lines represent 56 different hybrids. In e & f, statistically
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Supplementary Fig. 2. Genotypic values of leaf area index (LAI) measured in the field in
well-watered condition were not correlated to LAl values calculated by considering only
plant leaf area measured indoor.

Field values (on y-axis) were obtained at flowering time from UAV images via inversion of the

model PROSAIL""*. Values on x-axis were calculated as plant leaf area measured indoor at
flowering time, multiplied by the plant density in the corresponding field. Each point represents a
couple of observed genotypic values for one different hybrid of genetic progress panel. r =-0.25,
n=51, p-value = 0.073, CVyxyse = 30.9%.
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0.16 0.19 0.22 0.25 0.28 0.16 0.19 0.22 0.25 0.28

Observed LAR Indoor (leaf/day)  Observed LAR Field 1 (leaf/day)

Supplementary Fig. 3. Leaf appearance rate (LAR) when calculated in calendar time had
low correlations between genotypic values indoor and a field (a) or from one field to
another field (b). Light blue circles, mid-early hybrids (G2), dark blue squares, intermediate
hybrids (G3), red triangles, mid-late hybrids (G4). In a, r=0.40, n=21, p-value = 0.069, CVysc =

23.8%. In b, r=0.49, n=26, p-value = 0.0117, CVgyer = 16.91%.
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Supplementary Fig. 4. Schematic representation of genomic prediction cross-
validation strategy. Each training set was sampled randomly but proportionally to
diversity panel genetic groups and across years of release of genetic progress hybrids.
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Supplementary Fig. 5. Structure and diversity analysis of the studied panels using a

Principal Coordinate Analysis (PCoA) on SNP markers data. The PCoA was based on
a set of 440 000 polymorphic SNP markers. The analysis first shows the structuration of the
diversity panel parental lines into 4 genetic groups (lodent on the bottom left, Lancaster on
the top, Stiff_Stalk on the bottom right and the other diverse admixed genotypes in the
middle). The genetic progress and recent hybrids panels mainly overlap with the lodent and
admixed genotypes of diversity panel. The representation of the diversity panel hybrids
corresponding to the lines crossed with UHO007, highlights the effect of the common parent

UHO0O07, which induces a strong genomic relatedness between the diversity panel hybrids
and separates them from the other panels following the first PCoA dimension.
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Supplementary Fig. 6. The prediction of traits via a PC-BLUP model was less accurate than
that with G-BLUP models in Fig. 1cd, 2cd, 3ef, 5b and 7ab for cross-validations (a, c, e, g, i),
and lost accuracy for external validation (b, d, f, h). a, c, e, g & i, Comparison of observed mean
genotypic values and mean predicted values in a 5-fold CV scheme with 10 iterations, in the
‘diversity’ and ‘genetic progress’ panels, for leaf appearance rate (LAR), duration of the vegetative
phase, rh;, trait, LER and gsmax trait, respectively. b, d, f & h, Comparison of observed mean

genotypic values and predicted values in an independent dataset of elite recent hybrids, with model
calibration made using dataset of a, c, e & g, respectively. In a, c, e, g & i, purple empty circles,
diversity panel; red and yellow empty circles, genetic progress panel, hybrids released before 1980
and 2000, respectively ; green empty circles, hybrids released after 2000. In b, d, f & h, light blue
circles, mid-early hybrids (G2), dark blue squares, intermediate hybrids (G3), red triangles, mid-late
hybrids (G4). In a, r = 0.53, n= 302, p-value < 2.2E-16, CV,,,i = 5.4%. In b, r = 0.11, n= 50, p-

value = 0.45, CV, o = 4.1%. In ¢, r = 0.72, n= 302, p-value < 2.2E-16, CV,,;c = 3.4%. Ind, r =
0.11, n= 60, p-value = 0.39, CV =4.2%. In e, r = 0.58, n= 302, p-value < 2.2E-16, CV =

RMSE — RMSE

10%. In f, r =-0.21, n= 20, p-value = 0.37, CV =15.7%. Ing, r=0.61, n= 302, p-value < 2.2E-

RMSE —

16, CVqyse = 11%. In h, r = 0.25, n= 20, p-value = 0.28, CV,,,. = 12%. In i, r = 0.41, n= 302, p-
value = 1.3E-13, CV,,c = 9%.

This figure is continued below.
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Supplementary Fig. 6 (continued). The prediction of traits via a PC-BLUP model was less
accurate than that with G-BLUP models in Fig. 1cd, 2cd, 3ef, 5b and 7ab for cross-validations
(a, c, e, g,i), and lost accuracy for external validation (b, d, f, h). a, c, e, g & i, Comparison of
observed mean genotypic values and mean predicted values in a 5-fold CV scheme with 10
iterations, in the ‘diversity’ and ‘genetic progress’ panels, for leaf appearance rate (LAR), duration

of the vegetative phase, rh,,, trait, LER and gsmax trait, respectively. b, d, f & h, Comparison of

observed mean genotypic values and predicted values in an independent dataset of elite recent
hybrids, with model calibration made using dataset of a, c, e & g, respectively. In a, c, e, g & i,
purple empty circles, diversity panel; red and yellow empty circles, genetic progress panel, hybrids
released before 1980 and 2000, respectively ; green empty circles, hybrids released after 2000. In
b, d, f & h, light blue circles, mid-early hybrids (G2), dark blue squares, intermediate hybrids (G3),
red triangles, mid-late hybrids (G4). In a, r = 0.53, n= 302, p-value < 2.2E-16, CV,,,i = 5.4%. In b,

r=0.11, n= 50, p-value = 0.45, CV,,,. = 4.1%. Inc, r = 0.72, n= 302, p-value < 2.2E-16, CV
3.4%. Ind, r=0.11, n= 60, p-value = 0.39, CV

RMSE —

=4.2%. In e, r = 0.58, n= 302, p-value < 2.2E-

RMSE

16, CVgyee = 10%. Inf, r =-0.21, n= 20, p-value = 0.37, CV,,sc = 15.7%. In g, r = 0.61, n= 302, p-
value < 2.2E-16, CVy,,oc = 11%. In h, r = 0.25, n= 20, p-value = 0.28, CV,,c = 12%. Ini, r = 0.41,
n= 302, p-value = 1.3E-13, CViruse = 9%.
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Supplementary Data 1. Hybrids of the 'recent hybrids' panel and experiments in which

each of them was evaluated.

Hybrid Yearof Maturitygroupin  FAO Breeder | Field1 Field2 Field3 Field4  Indoor1
release France Index group

ARV75 2008 G2 (mid-early) (280 - 320) PIONEER X X

ARVO1 2011 G2 (mid-early) (280-320) LIMAGRAIN X X X

ARV32 2012 G2 (mid-early) (280 - 320) EURALIS X X

ARV09 2013 G2 (mid-early)  (280-320)  BAYER X X

ARV69 2014 G2 (mid-early) (280 -320) PIONEER X X X

ARV77 2014 G2 (mid-early) (280-320) LIMAGRAIN X X

ARV79 2014 G2 (mid-early) (280 -320) RAGT X X

ARV10 2015  G2(mid-early)  (280-320)  BAYER X X

ARV94 2015 G2 (mid-early) (280 - 320) BAYER X X X

ARV54 2016 G2 (mid-early) (280 -320) PIONEER X X

ARV55 2016 G2 (mid-early) (280 - 320) PIONEER X X X

ARV11 2017  G2(mid-early)  (280-320)  BAYER X X

ARV12 2017 G2 (mid-early) (280 - 320) BAYER X X X

ARV13 2017 G2 (mid-early)  (280-320)  BAYER X X

ARV14 2017 G2 (mid-early)  (280-320)  BAYER X X

ARV31 2017 G2 (mid-early) (280 - 320) EURALIS X X

ARV36 2017 G2 (mid-early) (280 - 320) EURALIS X X X

ARV48 2017 G2 (mid-early) (280 -320) KWS X X

ARV61 2017 G2 (mid-early) (280 -320) KWS X X X

ARV33 2018 G2 (mid-early) (280 -320) EURALIS X X

ARV87 2018 G2 (mid-early) (280-320) SYNGENTA X X

ARV30 2019 G2 (mid-early) (280 - 320) EURALIS X X

ARV37 2019 G2 (mid-early) (280 -320) RAGT X X

ARVS3 2019 G2 (mid-early) (280 -320) RAGT X X

ARV15 2020 G2 (mid-early)  (280-320)  BAYER X X

ARV50 2020 G2 (mid-early) (280 -320) KWS X X

ARVS0 2020 G2 (mid-early) (280 -320) RAGT X X

ARV18 2009  G3 (intermediate) (320 -400) BAYER X X X X

ARV23 2009 3 (intermediate) (320 - 400) BAYER X X X X

ARV24 2011 3 (intermediate) (320 - 400) BAYER X X X X

ARV65 2011 3 (intermediate) (320-400) CAUSSADE X X X X

ARV39 2012 3 (intermediate) (320 - 400) RAGT X X X X

ARV16 2015 3 (intermediate) (320 - 400) BAYER X X X X
X47D113_49 2015 3 (intermediate) (320 - 400) BAYER X X X X

ARV46 2015 3 (intermediate) (320-400) CAUSSADE X X X X

ARV59 2015 3 (intermediate) (320 - 400) PIONEER X X X X

ARV85 2015 3 (intermediate) (320 - 400) RAGT X X X X X

ARV88 2015 3 (intermediate) (320-400) SYNGENTA X X X X

ARV20 2016 3 (intermediate) (320 - 400) BAYER X X X X X

ARV22 2016 3 (intermediate) (320 - 400) BAYER X X X X

ARV28 2016 3 (intermediate) (320 - 400) BAYER X X X X X

ARV40 2016 3 (intermediate) (320 - 400) BAYER X X X X

ARV44 2016 3 (intermediate) (320 - 400) BAYER X X X X

ARV21 2017 3 (intermediate) (320 - 400) BAYER X X X X

Field 1, Matzenheim. Field 2, St-Bonnet-de-Mure. Field 3, Binas. Field 4, Pusignan. Indoor 1,
PhenoArch (Montpellier). See supplementary table 3 for more detail on experiments.
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Supplementary Data 1 (continued). Hybrids of the 'recent hybrids' panel and experiments

in which each of them was evaluated.

CHAPTER 1

Hybrid Year of  Maturity group in FAO Breeder | Fieldl Field2 Field3 Field4  Indoor 1
release France Index group

ARVO4 2018 G3 (intermediate) (320 - 400) KWS X X X X X

ARV47 2018  G3(intermediate) (320-400)  BAYER X X X X

ARVS2 2018  G3 (intermediate) (320 - 400) KWS X X X X X

ARV89 2018  G3(intermediate) (320-400) SYNGENTA X X X X

ARV91 2018  G3(intermediate) (320-400)  BAYER X X X X

ARV90 2019  G3(intermediate) (320-400) SYNGENTA X X X X

ARV19 2020 G3(intermediate) (320-400)  BAYER X X X X

ARV42 2020  G3 (intermediate) (320 - 400) KWS X X X X

ARV41 2010 G4 (mid-late)  (400-480)  RAGT X X X

ARVO3 2012 G4 (mid-late) (400 - 480) KWS X X X

ARVS6 2012 GA4(mid-late)  (400-480)  PIONEER X X X

ARV64 2012 G4(mid-late)  (400-480)  RAGT X X X

ARVE7 2012 G4(mid-late)  (400-480)  PIONEER X X X

ARV71 2012 G4(mid-late)  (400-480)  PIONEER X X X

ARVO7 2013 G4 (mid-late)  (400-480) LIMAGRAIN X X X

ARV25 2013 G4(mid-late)  (400-480)  BAYER X X X

ARV6E3 2014 G4 (mid-late)  (400-480) MAS_SEEDS X X X

ARV72 2014 G4 (mid-late)  (400-480)  PIONEER X X X X

ARVO5 2015 G4 (mid-late)  (400-480)  RAGT X X X

ARV26 2015 G4 (mid-late)  (400-480)  BAYER X X X X
X47D113_08 2015 G4 (mid-late)  (400-480)  BAYER X X X

ARVS7 2015 G4 (mid-late)  (400-480)  PIONEER X X X

ARVE0 2015 G4 (mid-late)  (400-480) LIMAGRAIN X X X

ARV66 2015 G4 (mid-late)  (400-480)  PIONEER X X X

ARV82 2015 G4 (mid-late)  (400-480)  RAGT X X X
X47D113_12 2015 G4 (mid-late)  (400-480)  RAGT X X

ARVO08 2016 G4 (mid-late)  (400-480)  BAYER X X X

ARV27 2016 G4 (mid-late)  (400-480)  BAYER X X X X

ARV34 2016 G4 (mid-late)  (400-480)  EURALIS X X

ARVO06 2017 G4 (mid-late)  (400-480)  BAYER X X X X

ARVSS 2017  GA4(mid-late)  (400-480)  PIONEER X X X

ARV73 2017 G4 (mid-late)  (400-480) CAUSSADE X X X X

ARV76 2017 G4 (mid-late)  (400-480)  BAYER X X X

ARV78 2017 G4 (mid-late)  (400-480)  BAYER X X X

ARV93 2017 G4 (mid-late)  (400-480)  RAGT X X X

ARVS1 2018 G4 (mid-late) (400 - 480) KWS X X X

ARV84 2018 G4 (mid-late)  (400-480)  RAGT X X X X

ARV29 2019 G4 (mid-late)  (400-480)  BAYER X X X

ARV35 2019 G4 (mid-late)  (400-480)  EURALIS X X X

ARV74 2019  G4(mid-late)  (400-480)  BAYER X X X
X47D113_09 2020 G4 (mid-late)  (400-480)  BAYER X X
X47D113 74 2020 G4 (mid-late) (400 - 480) KWS X X

Field 1, Matzenheim. Field 2, St-Bonnet-de-Mure. Field 3, Binas. Field 4, Pusignan. Indoor 1,

PhenoArch (Montpellier). See supplementary table 3 for more detail on experiments.
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CHAPTER 2 : ACQUISITION AND ANALYSIS OF EXTENDED
FIELD DATA IN  CONTRASTING ENVIRONMENTAL
CONDITIONS FOR CROP MODEL SIMULATION ON A SET OF
RECENT HYBRIDS
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CHAPTER 2

Introduction

In this chapter, we analysed the dataset collected in a multi-site field experiment for the
recent hybrids panel, that will allow us later (chapter 3) to test the consistency of a predictive
approach for modelling the genotypic variability of leaf area index (LAI) and grain number
(GN). We used the data collected in the European project INVITE (https://www.h2020-
invite.eu/), which consisted of 33 experiments, defined as combinations of site x year x
watering regime, distributed on a west—east transect for temperature and evaporative
demand across Europe. A subset of the ‘recent hybrids’ panel including 30 varieties
(Supplementary Table 1) was evaluated in this extended network, for LAl estimated from UAV
imaging data in 7 experiments, and for yield and its components in 32 experiments

(Supplementary Table 2).

We characterized the environmental conditions experienced by plants in each field based on
weather and soil water sensors. We first calculated environmental indices during vegetative,
flowering and grain filling phases for a reference hybrid (Millet et al., 2019). We then clustered
experiments into five environmental scenarios (Millet et al., 2016) that were used to
investigate GEI (genotype-by-environment interaction) variation for grain yield (Y). Finally, we
tested the representativeness of tested fields for yield and environment conditions based on
a previous simulation study (Parent et al., 2018) performed over 36 years (1975-2010) in 59
locations representative of the European maize growing area and of typical soil types of these

regions.

Regarding model parametrization, we first estimated a genotype-dependent parameter used
in Sirius-maize, namely the maximum grain number per plant of each studied hybrid. This was
estimated in the multi-site experiment by considering grain number in experiments with the
highest yield. We also estimated LAl for each hybrid in contrasting experiments in order to
test the model across environments. It was calculated via drone imaging and inversion of the
PROSAIL model in the studied fields and will be compared in chapter 3 to those simulated by
the crop model. Finally, we estimated genotypic sensitivities of grain number to mean soil
water potential and mean daily maximum temperatures during the flowering phase using a

linear regression model.
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CHAPTER 2

Results and discussion

The distribution of environmental conditions and yield in studied experiments was typical

of maize growing area in Europe.

The network of field experiment targeted the range of latitudes 43—51°N which covers a large
proportion of the maize growing area in Europe (Fig. 1a, Parent et al., 2018), and corresponds
to the set of 30 commercial hybrids maturity classes (mid-early (FAO 280) to mid-late (FAO
480)). Minimum and maximum temperatures during the flowering phase covered the range
of temperatures observed for the European maize growing area over the last 36 years (e.g.,
maximum temperatures ‘maxT_flo’ = 22—34 °C in our experiments vs 24-31 °C for the 59 x 36
studied records in European sites, Fig. 1cd). They tended to be higher, in average, than those
measured at the same latitudes in the last 36 years probably a consequence of climate change.
Mean soil water potential during the flowering phase ‘Psi_flo’ ranged from -0.27 to -0.02 MPa
for the reference hybrid (ARV18), representing the range of available water in most
agricultural soils as estimated using the equations of van Genuchten (1980). Hence, the recent
hybrids panel was studied here in a range of climatic conditions that essentially covered both

the current and past climatic conditions in the European maize growing area.
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Fig. 1 : The field experiments covered the latitudes of the maize growing area in Europe, and
represented a large part of the variability of yield and environmental conditions. a, Map of field
experiments, blue and red circles for irrigated and rainfed experiments, respectively, and black dots
for 59 sites distributed over Europe for representation of the maize growing area. b-d, Mean yield,
mean daily minimum and maximum temperatures during the flowering phase as a function of latitude
compared with means for 59 sites over 36 years. e, Three temperature scenarios captured a large part
of the variability of temperature in the field experiments. Time courses of air temperature in the
scenarios cool, warm, and hot. Each line represents one experiment; black lines, mean time course. f,
Time courses of soil water potential for fields classified as belonging to well-watered (WW) or water
deficit (WD) scenarios. Each line represents one experiment. In e and f, time is centered on flowering
time, in equivalent days at 20 °C. n, number of experiments x maturity group.

Yield, grain number per square meter and individual grain weight (weight at 15% moisture
content) are presented in Figure 2a, 2b and 2c, respectively, for all experiments. The mean
broad-sense heritability observed per experiment was 0.68, 0.78 and 0.83 for yield, grain
number and grain weight, respectively. Unsurprisingly, we observed a high correlation
between yield and its components (r=0.86 with grain number and 0.60 with individual grain
weight, p-value < 2.2e-16). The correlation between grain number and grain weight was
expectedly low (r=0.12, p-value=0.001) in spite of the trade-off between them (Fig. 5a-c, Turc
& Tardieu, 2018; Fernandez et al., 2022). Mean yields in the 32 studied experiments (3—16
t.ha™') covered the range simulated over 36 years (1975-2010) in 59 sites in Europe, with a

tendency towards higher yields in experimental than in historical yields (3—12 t.ha™, latitudes

59



CHAPTER 2

41-53°N, Parent et al., 2018, Fig. 1b). This may be due to the cumulated genetic gain for the

tested varieties, released from 2009 to 2020 in relation to the hybrid B73 x UHO07 simulated

in Fig 1 (0.1 t.ha"t.year™ genetic gain in Welcker et al., 2022).
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Fig. 2 : Grain yield (a, d) and its components (b, grain number; c, individual weight grain x1000) in

the 32 harvested field experiments in 2021 and 2022. d, Grain yield in each environmental scenarios

identified in Fig. 1. Boxes represent the genotypic variability in each experiment or each scenario (25%,

50% and 75% quantiles). In a, b and c, light blue and pink circles for irrigated and rainfed experiments,

respectively.
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CHAPTER 2

Five environmental scenarios, based on temperature and soil water status, synthesized

environmental conditions and accounted for yield variations across experiments.

To further characterize the environmental conditions sensed by hybrids in each field, we
focused on the three phenological phases (vegetative, flowering and grain filling phase) used
by Millet et al., (2019), based on the progression of leaf number and maturity for each hybrid
(Fig. 3ab). We calculated 36 environmental indices per phenological phase including air
temperature, soil water potential, light, air VPD, ETO and rainfall. We then identified two main
environmental drivers using a stepwise regression: mean soil water potential (Psi_flo) and
mean of daily maximum temperatures (maxT_flo) during flowering phase. These were among

the predictors in the best regression model for yield with ten explanatory variables (R?=0.65).
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Fig. 3 : The calculation of phenological phases used to estimate environmental indices in a given
experiment. a, The final leaf number (FLN, leaf number per plant at flowering), was estimated as
genotypic BLUEs values over three experiments (Bin22W, Mat22W and Pus22W). b, The crop cycle was
split into three phases based on the FLN of each hybrid, leaf appearance rate and maturity (Millet et
al. 2019). These phases were separated by floral transition, silk initiation, end of grain abortion and
grain maturity. They occurred at different thermal times for each hybrid.

Experiments were then clustered based on these two indices, calculated for the reference
hybrid (ARV18). Five environmental scenarios were identified (Fig. 1ef, Fig. 2d): Warm Well-
watered (mean vyield=13.3 t.ha™!), Cool Well-watered (mean vyield=12.4 t.ha™?), Hot Well-
watered (mean yield=11.7 t.ha™?), Warm Water-deficit (mean yield=8.7 t.ha™') and Hot Water-
deficit (mean vyield=7.1 t.ha™!). The genotype by environmental scenario interaction

represented 35% of the total genotypic variation for grain yield.
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We further investigated the GEl in the multi-site experiment using a linear model, where grain
number was fitted as a response to Psi_flo and maxT_flo during the flowering phase (see
Methods). Overall, an appreciable variability was observed for the genotype-dependent
sensitivities to the two environmental indices: from -4576 to 3418 grains m™2 MPa™! for B1
(Fig. 4a) and from -99 to 86 grains m=2 °C~* for B2 (Fig. 4b). For example, a decrease in Psi_flo
by 0.15 MPa decreased grain number by 8 to 31% for the least and most sensitive hybrids,
respectively; and an increase in maxT_flo by 6 °C decreased grain number by 1 to 21% for the
least and most sensitive hybrids, respectively. These ranges were expectedly lower than those
observed in the maize diversity panel of Millet et al. (2019). They may represent genetic

parameters for selecting new hybrids in a breeding context.
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Fig. 4 : Variability of genotype-specific response of grain number to environmental indices. a, Grain
number as a function of soil water potential averaged during the flowering phase. x-axis in reverse
order. b, Grain number as a function of daily maximum temperatures averaged during the flowering
phase. For better legibility in a and b, only ten hybrids with different responses are shown, one line
per hybrid. The variability of sensitivities from the factorial regression model (equation (3) in methods)
across the whole panel is shown in histograms.
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CHAPTER 2

Estimation of leaf area index and of maximum grain number per plants, to be used to test

simulation in Chapter 3

The genotypic maximum grain number per plant (GNmax), is an important genotypic parameter
for simulating grain yield in the Sirius maize crop model used in chapter 3. It was calculated as
BLUESs values over five high-potential experiments (Gle22D, Cra21W, Mat22W, Bin22W and
Cha22D) after correcting for field plant density (Fig. 5a-d). GNmax values ranged from 422 to
590 grains planttamong studied hybrids. The overall differences between the three maturity
classes of hybrids were low (Fig. 5d). This could be due to the fact that irrigation was managed
based on phenological stages of one reference intermediate hybrid (ARV18) in irrigated
experiments, so irrigation dates were not optimised by maturity group. This penalized latest
genotypes, expected to have highest GNmax otherwise. Furthermore, the standard maturity
classification considered for hybrids was determined according to the duration of the whole

crop cycle (until physiological maturity) and not according to the vegetative phase duration.
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Fig. 5 : Maximum grain number per hybrid. a-c, Relationship between grain number per square meter
and individual grain weight (x1000) for 3 different hybrids. d, GNmax Was calculated after correcting for
plant density as BLUEs values over five high-potential experiments having the greatest number of
common varieties : Gle22D, Cra21W, Mat22W, Bin22W and Cha22D. In a, b and ¢, light blue and pink
circles for irrigated and rainfed experiments, respectively. In d, different colors for different maturity
groups.
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Leaf area index (LAl) is a key trait for light interception and transpiration, which largely differs
between fields in relation to environmental conditions and plant density (Garriques et al.,
2008). We estimated it in this chapter and these estimated values will be compared with
simulated values later in chapter 3. LAl was estimated using UAV images, which were analysed
by inversion of the PROSAIL radiative transfer model (Casa et al., 2010; Duan et al., 2014;
Supplementary Fig. 1). UAV flights were performed three to seven times during the period
from plant emergence to flowering in 7 experiments out of the total of 33 field experiments:
Mau22W, Mau22D, Ouz22W, Ouz22D, Pus22W, Pus22D and Pus21W (Supplementary Table
2). The broad-sense heritability within experiment and per flying date ranged from 0.20 to
0.90. This could be due to the fact that UAV imaging derived traits are very sensitive to crop
phenological stage and weather conditions during flights (Blancon et al., 2019; Zhu et al.,
2022). The most relevant and regularly heritable LAl corresponded to flights performed
towards the end of the vegetative phase (16-17 leaf stage). They ranged from 0.86 to 4.21,
with high overall variability between irrigated and rainfed conditions (Fig. 6), and were

appreciably correlated with grain yield (r=0.43, p-value=9E-10).
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Fig. 6 : Leaf area index (LAI) in the 7 field experiments, measured via UAV flights. Boxes represents
the genotypic variability in each experiment (25%, 50% and 75% quantiles). LAl was calculated by
inversion of the PROSAIL model (Casa et al., 2010; Berger et al., 2018, Supplementary Fig. 1), based on
the multispectral images of the 7 experiments UAV flights (16-17 leaf stage). Light blue and pink circles
for irrigated and rainfed experiments, respectively.
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Material and methods, in addition to that in Chapter 1

Genetic material. A subset of the ‘recent hybrids’ panel presented in chapter 1 was designed
in the framework of the European project INVITE (https://www.h2020-invite.eu/) and was
extensively evaluated in a multi-site field network across Europe. It included 30 commercial
hybrids released from 2009 to 2020, belonging to mid-early (G2), intermediate (G3) or mid-

late (G4) maturity class in France (Supplementary Table 1).

Field experiments. In addition to the 4 field experiments presented in chapter 1 for the
“recent hybrids” panel, 29 additional experiments (defined as combinations of site x year x
watering regime) were carried out in 2021 and 2022, under irrigated or rainfed conditions
(Supplementary Table 2). Experiments followed an alpha-lattice design or a randomised
complete block design and some of them were split by varieties maturity classes
(Supplementary Table 2), each with two or three replicates of four-row plots, 6 m long. The

targeted plant density was 8 or 9 plants m™2.

In all experiments and hybrids, anthesis and silking dates were scored by visiting experiments
every third day. Plots were mechanically harvested, then grain yield was scaled to 15%
moisture content after estimation of grain moisture at harvest. 1000 grains weight was
measured and used to calculate grain number per square meter from grain yield. One
experiment (Pus21W) could not be harvested due to a storm that damaged plants around the
flowering stage. The number of appeared leaves was scored on ten plants every week from
plant emergence to flowering, for one reference hybrid per maturity class in all experiments,
and for all hybrids in three experiments (Bin22W (Field 3), Mat22W (Field 1) and Mau22W,
Supplementary Table 2). Leaf appearance rate (LAR) was calculated as the slope of the linear
relationship between the number of visible leaves and thermal time (Parent et al., 2010),
during the period from plant emergence to the 12-leaf stage. Final leaf number (FLN)

corresponded to the total leaf number per plant at flowering.

UAV (drone) flights with a DJI multispectral camera were performed three to seven times
during the period from plant emergence to flowering in 7 out of the 33 field experiments :
Mau22W and Mau22D in the DiaPHEN INRAE platform; Ouz22W and Ouz22D in the Phenofield
ARVALIS platform (Beauchéne et al., 2019); Pus22W, Pus22D (Field 2) and Pus21W (Field 4) in

Pusignan ARVALIS station (Supplementary Table 2). An automatic image-processing pipeline
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was applied by Hiphen, Avignon, France (http://www.hiphen-plant.com), following methods
presented in (Blancon et al., 2019). In addition to ALA trait (Average Leaf inclination Angle to
the soil level) presented in chapter 1, leaf area index (LAI) was calculated by inversion of the
PROSAIL model (Casa et al., 2010; Duan et al., 2014; Berger et al., 2018) (Supplementary Fig.
1, Supplementary Table 3), based on the multispectral images of the 7 experiments UAV

flights.

Environmental variables were recorded daily in all experiments, including light, air
temperature, relative humidity (RH), rainfall and wind speed. Meteorological data for some
experiments were obtained from the AGRI4CAST database of the JRC (Joint Research Centre)
or the INRAE CLIMATIK database. Soil water potential was measured every day with
tensiometers at 30 and 60 cm depths with three or two replicates, located in plots sown with
a common reference hybrid (ARV18). Soil data (physical and chemical properties) were
obtained from the JRC European Soil Commission database and from the FAO Harmonized

World Soil database.

Yield and environmental conditions in Europe. We tested the representativeness of the field
experiments presented here, compared to the information collected over 36 years in 59
locations representative of the European maize growing area and of typical soil types of these
regions (Parent et al., 2018). Briefly, soil data were obtained from the JRC European Soil
Commission database and from the Crop Growth Monitoring System. Meteorological data
represented 36 years of daily weather (1975-2010) obtained from the AGRI4CAST database
of the JRC or the INRAE CLIMATIK databases. Yields presented in Fig. 1 are mean values
simulated over the 59 x 36 x 2 combinations of location, year and watering regime (Parent et
al., 2018). For that, a modified version of the APSIM model was used (Hammer et al., 2010),
parametrized for the B73xUH007 hybrid (Lacube et al., 2020).

Field traits Analyses. Genotypic values (BLUEs) for each trait in each field experiment were
estimated by correcting raw traits values for spatial effects, by fitting a mixed model (R
package SpATS, van Eeuwijk et al., 2019), with a fixed term for genotype and random effects
for rows and columns as well as a smooth surface defined on row and column coordinates.
Broad-sense heritabilities were calculated with the same R package, using the same model but

with the genotype effect included as a random term. Regarding longitudinal traits (LAl),
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genotypic values at individual time points, t, were obtained from their smoothed time series
using a generalized additive model fitted to the spatially adjusted daily measurements, ¥; . (t),

for each plant k of genotype i :
Fik(@®) = a; + fi(t) + €, (), €x(t) ~N(0,0%) €y

where q; is a genotype-specific intercept, fi (t) is a genotype-specific thin plate regression
spline function on time, and €k (t) is a random error term (R package statgenHTP, Millet & al.,

2022; Pérez-Valencia et al., 2022).

The genotypic maximum grain number per plant (GNmax) was calculated after considering field
plant density as GN BLUEs values over five high-potential experiments having the greatest

number of common varieties : Gle22D, Cra21W, Mat22W, Bin22W and Cha22D.

Environmental characterization and multi-environment analyses. To characterize the above
field experiments, we first defined three phenological phases (Millet et al., 2019) (Fig. 3). First,
the vegetative phase corresponded to the thermal time period between floral transition (leaf
number=(FLN/2)-1), where FLN is final leaf number, and silk initiation (leaf number= FLN-2).
Second, the flowering phase elapsed from silk initiation to the end of grain abortion (14 days
at 20 °C after silking). Third, the grain-filling phase elapsed from the end of abortion to
physiological maturity defined as the date at which grain water content decreases to 0.32 g
g-1 matter. 36 environmental indices per phenological phase were then calculated with
experiments environmental data including air temperature, soil water potential, light, air VPD,

ETO and rainfall (Millet et al., 2016, 2019).

To identify the most important environmental sources of yield variation in the multi-site
experiment, an ANOVA-based stepwise regression was performed with the latter indices and
variety factor as predictors of yield, using the R package ‘olsrr’ (Franke, 2010; Hebbali, 2020).
Mean soil water potential at 60 cm depth (Psi_flo) and mean of daily maximum temperatures
(maxT_flo) during the flowering phase for the reference hybrid (ARV18) were used to cluster
field experiments into five environmental scenarios (Millet et al., 2016). The three
temperature scenarios were : cool (maxT_flo < 27°C), warm (27°C < maxT_flo < 30°C) and hot
(maxT_flo > 30°C). Soil water conditions resulted in two scenarios : well-watered ‘WW’ (Psi_flo

> -99 kPa) and water-deficit ‘WD’ (Psi_flo < -99 kPa).
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To investigate GEIl (genotype-by-environment interaction) variation for grain yield (Y) across
the experiments grouped into environmental scenarios, we fitted a linear model using the R
package ‘stats’ :

Y=pu+ G+ Scen+ G X Scen + Exp X Scen + ¢ (2)

where W is the intercept, G is a genotypic main fixed effect, Scen is an environmental scenario
main fixed effect, G x Scen is an interaction term fixed effect between genotype and
environment scenario, Exp x Scen is a fixed effect representing ‘experiments within scenarios’

design and € is a residual effect.

Finally, we estimated genotypic sensitivities of grain number (GN) to environmental drivers
identified above during the flowering phase (Psi_flo and maxT_flo). These sensitivities

corresponded to regression coefficients obtained after fitting the following linear model :
GNijj=pu+ g + Psi_floj + maxT_floj + f1; X Psi_flol-,j + B X maxT_flol-,j + & 3)

where W is the intercept, g; is a genotypic main fixed effect, Psi_flo; and maxT_flo; are
environmental main effects and ¢;; is a residual effect; B1i and B, are the genotype-
dependent sensitivities to environmental indices Psi_flo and maxT_flo, respectively, sensed

by the it hybrid in the ji experiment.
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Supplementary table 1. Varieties of the recent hybrids panel, including INVITE
subset, and number of field experiments in which they were evaluated.

. Year of . FAQO Index INVITE #
Hybrid Maturity group Breeder
release group subset Exp
ARV01 2011 G2 (mid-early) (280-320) LIMAGRAIN X 26
ARV12 2017 G2 (mid-early) (280 - 320) BAYER X 25
ARV31 2017 G2 (mid-early) ~ (280-320)  EURALIS X 26
ARV32 2012 G2 (mid-early) (280 - 320) EURALIS X 26
ARV50 2020 G2 (mid-early) (280 - 320) KWS X 22
ARVS55 2016 G2 (mid-early)  (280-320)  PIONEER X 23
ARV79 2014 G2 (mid-early)  (280-320) RAGT X 26
ARV83 2019 G2 (mid-early) (280 - 320) RAGT X 26
ARV87 2018 G2 (mid-early)  (280-320) SYNGENTA X 26
ARV94 2015 G2 (mid-early) (280 - 320) BAYER X 16
X47D113_29 2018 G2 (mid-early) (280-320) SYNGENTA X 23
X47D113_95 2020 G2 (mid-early) (280-320) LIMAGRAIN X 23
ARV04 2018 G3 (intermediate) (320 - 400) KWS X 30
ARV18 2009 G3 (intermediate) (320 - 400) BAYER X 32
ARV20 2016 G3 (intermediate) (320 - 400) BAYER X 29
ARV23 2009 G3 (intermediate) (320 - 400) BAYER X 29
ARV24 2011 G3 (intermediate) (320 - 400) BAYER X 28
ARV39 2012 G3 (intermediate) (320 - 400) RAGT X 29
ARV52 2018 G3 (intermediate) (320 - 400) KWS X 30
ARV85 2015 G3 (intermediate) (320 - 400) RAGT X 30
ARVE9 2018 G3 (intermediate) (320-400) SYNGENTA X 25
ARV25 2013 G4 (mid-late) (400 - 480) BAYER X 26
ARV27 2016 G4 (mid-late) (400 - 480) BAYER X 25
ARV60 2015 G4 (mid-late) (400 - 480) LIMAGRAIN X 26
ARV66 2015 G4 (mid-late) (400 - 480) PIONEER X 27
ARV72 2014 G4 (mid-late) (400 - 480) PIONEER X 27
ARV73 2017 G4 (mid-late) (400 - 480) CAUSSADE X 22
ARV84 2018 G4 (mid-late) (400 - 480) RAGT X 14
X47D113_09 2020 G4 (mid-late) (400 - 480) BAYER X 19
X47D113_74 2020 G4 (mid-late) (400 - 480) KWS X 21
ARV09 2013 G2 (mid-early) (280 - 320) BAYER 4
ARV10 2015 G2 (mid-early) (280 - 320) BAYER 4
ARV11 2017 G2 (mid-early)  (280-320) BAYER 4
ARV13 2017 G2 (mid-early)  (280-320) BAYER 4
ARV14 2017 G2 (mid-early) (280 - 320) BAYER 4
ARV15 2020 G2 (mid-early)  (280-320) BAYER 4
ARV30 2019 G2 (mid-early)  (280-320)  EURALIS 4
ARV33 2018 G2 (mid-early) (280 - 320) EURALIS 4
ARV37 2019 G2 (mid-early)  (280-320) RAGT 4
ARV48 2017 G2 (mid-early) (280 - 320) KWS 4
ARV54 2016 G2 (mid-early) (280 - 320) PIONEER 4
ARV61 2017 G2 (mid-early)  (280-320) KWS 4
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Supplementary Table 1 (continued). Varieties of the recent hybrids panel, including
INVITE subset, and number of field experiments in which they were evaluated.

. Year of . FAO Index INVITE #
Hybrid Maturity group Breeder
release group subset Exp
ARV69 2014 G2 (mid-early) (280-320)  PIONEER 4
ARV75 2008 G2 (mid-early) (280-320)  PIONEER 4
ARV77 2014 G2 (mid-early) (280-320) LIMAGRAIN 4
ARV80 2020 G2 (mid-early) (280-320) RAGT 4
ARV16 2015 G3 (intermediate) (320 - 400) BAYER 7
ARV19 2020 G3 (intermediate) (320 - 400) BAYER 7
ARV21 2017 G3 (intermediate) (320 - 400) BAYER 7
ARV22 2016 G3 (intermediate) (320 - 400) BAYER 7
ARV28 2016 G3 (intermediate) (320 - 400) BAYER 8
ARV40 2016 G3 (intermediate) (320 - 400) BAYER 7
ARV42 2020 G3 (intermediate) (320 - 400) KWS 7
ARV44 2016 G3 (intermediate) (320 - 400) BAYER 7
ARV46 2015 G3 (intermediate) (320 - 400) CAUSSADE 7
ARV47 2018 G3 (intermediate) (320 - 400) BAYER 7
ARV59 2015 G3 (intermediate) (320 - 400) PIONEER 7
ARV65 2011 G3 (intermediate) (320-400) CAUSSADE 7
ARVE8 2015 G3 (intermediate) (320-400) SYNGENTA 7
ARV90 2019 G3 (intermediate) (320-400) SYNGENTA 7
ARV91 2018 G3 (intermediate) (320 - 400) BAYER 7
X47D113_49 2015 G3 (intermediate) (320 - 400) BAYER 7
ARVO03 2012 G4 (mid-late) (400 - 480) KWS 6
ARVO5 2015 G4 (mid-late) (400 - 480) RAGT 6
ARVO06 2017 G4 (mid-late) (400 - 480) BAYER 7
ARVO7 2013 G4 (mid-late) (400 - 480) LIMAGRAIN 5
ARV08 2016 G4 (mid-late) (400 - 480) BAYER 6
ARV26 2015 G4 (mid-late) (400 - 480) BAYER 7
ARV29 2019 G4 (mid-late) (400 - 480) BAYER 6
ARV35 2019 G4 (mid-late) (400 - 480) EURALIS 6
ARV41 2010 G4 (mid-late) (400 - 480) RAGT 6
ARV51 2018 G4 (mid-late) (400 - 480) KWS 6
ARV56 2012 G4 (mid-late) (400 - 480) PIONEER 6
ARV57 2015 G4 (mid-late) (400 - 480) PIONEER 6
ARV58 2017 G4 (mid-late) (400 - 480) PIONEER 6
ARV63 2014 G4 (mid-late) (400 - 480) MAS_SEEDS 6
ARV64 2012 G4 (mid-late) (400 - 480) RAGT 6
ARVE7 2012 G4 (mid-late) (400 - 480) PIONEER 6
ARV71 2012 G4 (mid-late) (400 - 480) PIONEER 6
ARV74 2019 G4 (mid-late) (400 - 480) BAYER 6
ARV76 2017 G4 (mid-late) (400 - 480) BAYER 6
ARV78 2017 G4 (mid-late) (400 - 480) BAYER 6
ARV82 2015 G4 (mid-late) (400 - 480) RAGT 6
ARV93 2017 G4 (mid-late) (400 - 480) RAGT 6
X47D113_08 2015 G4 (mid-late) (400 - 480) BAYER 6
X47D113_12 2015 G4 (mid-late) (400 - 480) RAGT 3
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Supplementary Table 2. Field experiments performed for the entire recent hybrids
panel or a subset of it.

Name i GPS o Water . Maturity  # Measured
Location Year Country  Institution Scenario i
exp. Coord. management groups  Hyb traits
47.573 Emergence, Anthesis &
Ang22D |Liond'Angers 0'?29' 2022 France ARVALIS rainfed Warm_WD G2 29 Silking dates, Plant density,
' Yield & its components
LAR, Emergence, Anthesis
& Silking dates, Leaf 6
Bin22W , 47.92, . G2, G3, (& -flKing cates, Leat s
i Binas 2022 France ARVALIS irrigated Warm_Ww 86 dimensions, Plant density,
(Field 3) 1.479 G4 , .
Final leaf number, Yield &
its components
46.162, ‘ N G2, G3, ' Ernergence, Anthesis &
Cad22W | Cadenazzo 8.934 2022 Switzerland Agroscope  irrigated Hot_WWwW Ga 30 Silking dates, Plant density,
’ Yield & its components
. 46.399, ‘ . 62, G3, ' Etnergence, Anthesis &
Cha21D Changins 6.239 2021 Switzerland Agroscope rainfed Cool_WW ca 29 Silking dates, Plant density,
' Yield
Emergence, Anthesis &
) 46.401, . . G2, G3, o .
Cha22D Changins 6.256 2022 Switzerland Agroscope  irrigated = Warm_WW Ga 30 Silking dates, Plant density,
’ Yield & its components
. 49.125, ‘ . 62,G3, ' Ewergence, Anthesis &
Chr21D Chrlice 16.634 2021 Czechia Ukzuz rainfed Warm_Ww G4 23 Silking dates, Plant density,
' Yield & its components
. 49.119, . . 62, G3, ' Efnergence, Anthesis &
Chr22D Chrlice 16.632 2022 Czechia Ukzuz rainfed Warm_WD G4 30 Silking dates, Plant density,
' Yield & its components
o Emergence, Anthesis &
Cra21D | Cramchaban 0 ?0,5 2021 France ARVALIS rainfed Cool_WW  G3,G4 54 Silking dates, Plant density,
' Yield & its components
46.214 Emergence, Anthesis &
Cra21W | Cramchaban DI?DE-' 2021 France ARVALIS irrigated Cool_WW  G3,G4 54 Silking dates, Plant density,
’ Yield & its components
. 47.114, ' . G2, G3, ' Ernergence, Anthesis &
Gle21D Gleisdorf 15.703 2021 Austria AGES rainfed Warm_Ww Ga 20 Silking dates, Plant density,
' Yield & its components
Emergence, Anthesis &
) 47.114, . , G2, G3, s .
Gle22D Gleisdorf 15.703 2022 Austria AGES rainfed Warm_WD G4 30 Silking dates, Plant density,
’ Yield & its components
49.385, . G2, G3, ' Ernergence, Anthesis &
Has21D Hassloch 8.268 2021 Germany BSA rainfed Cool_Ww Ga 28  Silking dates, Plant density,
’ Yield & its components
49382, . 62,G3, ' Ewergence, Anthesis &
Has22D Hassloch 8.264 2022  Germany BSA rainfed Cool_WWwW G4 30 Silking dates, Plant density,
’ Yield & its components
L 4615 6 63 Emergence, Anthesis &
e L3, . 23, _ .
LMg21D 2021 France GEVES rainfed Cool_WW 30 Silking dates, Plant density,
Magneraud -0.695 G4 . )
Yield & its components
Le 46.154, o 62,G3, ' Ewergence, Anthesis &
LMg21W 2021 France GEVES irrigated Cool_WWwW 30 Silking dates, Plant density,
Magneraud -0.695 G4 ) )
Yield & its components
Le 16.153, . G2, G3, ' Etnergence, Anthesis &
LMg22D 2022 France GEVES rainfed Hot_WD 30 Silking dates, Plant density,
Magneraud -0.693 G4 . )
Yield & its components
" 16.153 - Emergence, Anthesis &
LMg22wW Magngraud *0:694’ 2022 France GEVES irrigated Hot_WW éd ' 30 silking dates, Plant density,

Yield & its components

Name exp., Experiment name used in the text; Year, year when the experiment was done.
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Supplementary Table 2 (continued). Field experiments performed for the entire
recent hybrids panel or a subset of it.

Name ) GPS L Water . Maturity # Measured
Location Year Country  Institution Scenario .
exp. Coord. management groups Hyb traits
Emergence, Anthesis &
Mat21W | Matzenheim 4::1092' 2021 France ARVALIS rainfed Cool_Ww G2 26  Silking dates, Plant density,
Yield & its components
LAR, Emergence, Anthesis
Mat22w . 48.401, N '&Silkling dates, LeafE":
(Field 1) Matzenheim 7618 2022 France ARVALIS irrigated Cool_Ww G2, G3 53 dllmensu:ms, Plant dP:nsrtv,
Final leaf number, Yield &
its components
ALA, LAI, fiPAR, Emergence,
Mau22D | Mauguio ;’_ i‘)‘f; 2022 France GEVES rainfed Hot_WD G"‘l‘;fa’ 30 ::::Z:n%iztk‘::j ::'::S’
components
LAR, ALA, LA, fiPAR,
' 43612, o G2, G3, ' Er'nergem:e, Anthesis &
Mau22W Mauguio 3973 2022 France GEVES irrigated Hot_WWwW G4 30 Silking dates, Plant density,
Final leaf number, Yield &
its components
50.975, Emergence, Anthesis &
Mer21D Merelbeke 2021 Belgium ILVO rainfed Cool_WW G2,G3 20  Silking dates, Plant density,
3.743 Yield & its components
50.983, Emergence, Anthesis &
Mer22D Merelbeke 3773 2022 Belgium ILVO rainfed Cool_WW  G2,G3 23 Silking dates, Plant density,
Yield & its components
43.358 Emergence, Anthesis &
Mon21D Montardon _0.35' 2021 France ARVALIS rainfed Cool_WW G3, G4 54 Silking dates, Plant density,
Yield & its components
43.358, Emergence, Anthesis &
Mon22D | Montardon 2022 France ARVALIS irrigated Cool_WD G3, G4 58 Silking dates, Plant density,
036 Yield & its components
ALA, LAl fiPAR, Emergence,
Ouz22D | PhenoField f;f; 2022 France  ARVALIS  rainfed  Warm_WD Gll’;fa’ 24 :::f;:i‘iz{k‘:,?j :;t':;’
components
ALA, LAI, fiPAR, Emergence,
Ouz22W | PhenoField 4;??;1‘ 2022  France  ARVALIS  irrigated  Warm_WW G"‘l‘;fa’ 24 ‘:;:::Z:nfif‘:k‘::j ::'::S’
components
48.061, ' . G2, G3, 'E['nergence, ﬂnthesissr.
Pac22D Pachfurth 16.817 2022 Austria AGES rainfed Warm_WD Ga 30 Silking dates, Plant density,
Yield & its components
TI:::::\; Pusignan 4:_';:;' 2021  France  ARVALIS  irrigated  Cool WW G3,G64 54 T LA;I::::; :;“itirgence’
ALA, LAI, fiPAR, Emergence,
Pus220 Sa{"': fﬁ:ZEt :_ Z:é 2022 France  ARVALIS  rainfed  Warm_WD G3,G4 20 :{::f::i‘iztk‘::j ::?:s’
components
ALA, LAI, fiPAR, Emergence,
. Anthesis & Silking dates,
Pus22W | SaintBonnet  45.714, ) France  ARVALS  irrigated Warm WW G3,G4 58  Plantdensity, Fiﬁal leaf
(Field 2) de Mure 5.046 . \
number, Yield & its
components
Emergence, Anthesis &
46.519, ., , G2, G3, . ,
Sek21D Szekkutas 20,523 2021 Hungary Nebih rainfed Hot_WD Ga 30 Silking dates, Plant density,
Yield & its components
47.329, ‘ . G2, G3, ' Er'nergem:e, Anthesis &
Tor22D Tordas 18.753 2022 Hungary MNebih rainfed Hot_WD G4 30 Silking dates, Plant density,

Yield

Name exp., Experiment name used in the text; Year, year when the experiment was done.
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Supplementary Table. 3 : Overview of the input parameters of the PROSAIL model,
with symbols, units and typical variable ranges published in the literature for five different
crops that have been analyzed most often by the studies (Berger et al. 2018).

Parameter Symbol Units Typical Ranges for Crops

Maize Wheat Rice Soybean Sugar Beet

Leaf Model: (PROSPECT-D)

Leaf structure index N Unit less 1.2-1.8 1.0-2.5 1.0-2.0 1.2-26 1.0-1.5
Chlorophyll a + b content Cap (ug/em?) 0-80 0-80 0-80 080 2045
Total carotenoid content Cex (ug/em?) 1-24 1-24 4-17 - -
Total anthocyanin content Canth (ug/em?) - - - - -
Brown pigments Cbp Unit less 0-1 0-1 0-1 0-1 0-1
Dry matier ‘l;:fj:;‘“ leafmass o /IMA  (g/em?) 000400075 0001-0.02 0001-0.02 0001-0.02  0.004-0.007
Equivalent water thickness, or — por e (o 001-003  0.001-005 0.001-0002 0001-005  0.03-0.08
water depth
Canopy Model: (4SAIL)
Leaf area index LAI (m?/m?) 0-7 0-8 0-10 0-7 0—4
Auerage_ lea_f im{linati_un _.ang_le *or: ALIA ©) 20-70
Leaf 1nc11nat1-t‘.l.n d i::lrlbuht’ll‘l. LIDF, s, ©) 20-90 20-80 10-75 2040
function
Hot spot parameter Hot (m/m) 0.01-0.2 0.01-05 0.01-0.1 02 0.2-0.4
Soil reflectance Psoil (%)
Soil brightness factor Olgnil Unit less 0.5-1.5*** or (-1 ****
Fraction of diffuse illumination skyl Unit less 23% for a standard clear sky
Sun zenith angle SZASD; ()
Viewing (observer) zenith angle OZA/0, ) According to actual conditions during data/image acquisition
Relative azimuth angle between FAA/osy ©)

sun and sensor

* characterizes an ellipsoidal leaf inclination model; ** spherical, planophile, erectophile, uniform,
extremophile or plagiophile types. LIDF is characterized by LIDFa, which controls the average leaf
slope and LIDFb which controls the distribution’s bimodality; *** to be multiplied with single psoll
spectrum; **** scaling factor between the two model implemented psoil spectra (wet versus dry).

Leaf ~ SZA

reflectance Direct + diffuse 0ZA
incoming radiance

PROSPECT = =
"anst:?rftance ; - 4 ;SL Soil spectrum,
e (N A Hot ) Psoil
Cap Cop g e
Cox ) Crm
Can(hr L Cw

Supplementary Fig. 1 : Calculation of canopy reflectance using the coupled PROSPECT
+ SAIL models. PROSAIL combines the leaf optical properties model PROSPECT with the
turbid medium canopy radiative transfer model SAIL. The models are coupled so that the
simulated leaf reflectance and transmittance from PROSPECT are fed into the SAIL model,
completed with information about soil optical properties and illumination/observation geometry
(Beraer et al. 2018). Variable svmbols are explained in Subpnlementarv Table 3.
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CHAPTER 3 : SIMULATING LEAF AREA INDEX AND GRAIN
NUMBER FOR PANELS OF MAIZE HYBRIDS IN CONTRASTING
ENVIRONMENTAL CONDITIONS

This chapter presents the current status of this work, which will still be fine-tuned before

submission to a journal, in particular:

e Modelling individual grain weight and grain yield, in addition to leaf area index and grain
number presented here

e Optimising the set of genotype-dependent parameters provided to the crop model and

their calculations

e Validating the model using more experiments and genotypes
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Introduction

In this chapter, we tested the consistency of our predictive approach, which aimed at
simulating the performance of hundreds of genotypes via a combination of phenomics,
genomic prediction and crop modelling. The specificity of this chapter is to perform
simulations based on a crop model whose genotype-dependent parameters originate from
traits presented in previous chapters. However, due to time constraints, our study was limited
here to the first part of the crop cycle, with the predictions of leaf area index (LAI) and grain
number (GN) for tens of varieties in contrasting environmental conditions. Simulations were
based on a set of traits, transformed into model parameters, related to (i) plant phenology
(leaf appearance rate ‘LAR’ and final plant leaf number ‘FLN’), (ii) plant architecture (rhpap),
(iii) leaf growth (max leaf expansion rate ‘LER’) and (iv) plant responses to environmental
conditions (stomatal conductance gsmax, LER sensitivities to VPD and SWP, Table 1). We also
estimated the genotype-dependent maximum plant grain number (GNmax) based on the
dataset presented in Chapter 2. As tested in Chapter 1, the genotypic values of these traits

can be estimated via statistical prediction models based on genomic information only.

We used for that the process-based crop model Sirius Maize, which simulates the phenology,
the growth and the development of maize plants from sowing to physiological maturity, along
with the fluxes of water, nitrogen and carbon in the soil-plant-atmosphere continuum in
response to environmental conditions and crop management. Its input data are crop
management practices (sowing date, planting density, irrigation dates and amounts, soil
fertilisation dates and amounts), micro-meteorological daily data (min and max air
temperatures, global radiation, rainfall and air relative humidity) and soil main characteristics
of the target simulated field (soil depth; soil water lower, drained upper and saturated limits;
soil bulk density and soil organic N content), provided to the model via a specific interface.
Genotype-dependent parameters are also provided to the model via an interface. Sirius Maize
derives from SiriusQuality2 originally developed for small grain cereals (Jamieson et al., 1998;
Martre et al., 2006; Supplementary Fig. 1), but was recently extended to maize. For that, the
LEPSE group, in collaboration with Limagrain, adapted original algorithms, used modules
developed by Lacube et al. (2020) for the model APSIM (Hammer et al., 2010) and re-
developed the code with the software framework BioMA. The Sirius graphical interface

provides tools for complex multi-runs and for parameter optimization.
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Table 1 : Summary of measured traits used for estimating genotype-dependent
parameters of Sirius Maize.

Range of trait values Sirius
Used traits for Sirius parameterization Genetic Recent hybrids Origin genotypic
parameters
progress panel panel
hylyge Brig.
1) Leaf Appearance Rate (LAR, leaf/d,p) 0.22- 0.30 0.23- 0.29 Indo.or PF PIVicpr Dup
{Field ayy, by
PHENOLOGY
N
2) Final Leaf Number (FLN) 14- 20 16— 20 Indoor PF fnale O
[Field stopLigul
GROWTH 3) max Leaf Expansion Rate (LER, cm?/dagec) 128-230 112 -182 Indoor PF LERa
ARCHITECTURE 4) rhppg 0.21- 0.38 0.29- 0.43 Indoor PF Kl coeff
5) Stomatal Conductance (g5, mmol/m’/s) 97 - 144 116- 125 Indoor PF LUEpre
RESPONSES TO e
ENVIRONMENT 6) LER Sensitivity to VPD (mm/dag./kPa) -2.05 - -1.02 | -1.73 - -1.38 Indoor PF LERb
7) LER Sensitivity to SWP (mm/dzgc/MPa) 4.27- 7.82 5.75- 6.63 Indoor PF LERc
MAX YIELD
i i - - i GN
COMPONENTS 8) max Grain number (grains/plant) 256- 612 422 - 580 Field max
-
LERc 044
LERD 02 | -02
* *
LERa 0441 055 | 006 Pearson Correlation
.
* » 0.5
MNfinal 021 |-005]| 044 | 046 00
» . . s
phyltip —046 | -031| 0.13 | 003 | 023 10
» ™ -
Kl 041 | 019 |-018|-021| 028 | 0.61
-
LUEpre | 015 | 014 | 012 | 014 | 006 | 01 03
> R > 2 0 o &+
THEEEESE
F = WV WV VoS

Fig. 1 : Correlation heat map for estimated genotype-dependent parameters for the genetic

progress panel. Statistically significant correlations are shown with an asterisk.
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Approach used in the Chapter

Genotype-dependent parameters.

A set of 13 genotype-dependent parameters that serve to run Sirius maize calculations was
derived from the datasets presented in Chapters 1 and 2 (Table 1, Fig. 1, Supplementary Table
1). All parameters not described here were considered as common to all studied genotypes

(Lacube et al. 2020).

-Some of these parameters directly derived from measured traits: (i) Nrinal, the plant leaf
number at flowering time (a trait highly correlated to anthesis date, Parent et al., 2018;
Castelletti et al., 2020), (ii) GNmax, the grain number per plant calculated by considering grain
number in fields with best environmental conditions, (iii) LERb, the slope of the linear
regression between leaf elongation rate and VPD, estimated in indoor experiments with a
time definition of one hour, (iv) LERc, the slope of the linear regression between leaf
elongation rate and SWP, estimated in indoor experiments with a time definition of one day

(Welcker et al., 2011; Chapuis et al., 2012).

- Other parameters were extracted from traits by using simple equations. Together with traits
presented above (Nrinal, LERD, LERC), they are used by Sirius Maize to calculate leaf area index
(LAI). These parameters are: (i) the genotype-dependent thermal time between the emission
and ligulation of two consecutive leaves (phyllochron ‘phyli,” and ligulochron ‘ant/,
respectively), (ii) genotype-dependent parameters describing the beginning and end of these
processes and the shape of their relation to thermal time (btip, bu1, ot and stopLigul), (iii) the
elongation rate of leaf 6 (LERa), from which the model calculates that of all other leaves. The
calculation of these parameters (LERa, phylip, btip, an, bui, atwr and stoplLigul) is detailed in the

methods section.

- Finally, two genotype-dependent parameters (kl and LUE) were extracted from traits that
are related to them, but cannot be calculated via deterministic equations. These parameters
were scaled to the corresponding traits (see Methods). They are used in the model for the

Monteith approach of transformation of incident light into biomass :
ABiomass (0,t) = [; LxRIExLUE dt (1)

Where ABiomass (0,t) is the accumulation of biomass from times 0 to t, L is the incident light

with a time definition (dt) of one day, RIE (radiation interception efficiency) is the ratio of
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intercepted to incident light, with the same time definition, and LUE (light use efficiency) is
the ratio of biomass accumulation to intercepted light, with the same time definition.

The first parameter used by Sirius Maize is the light extinction coefficient, ki, which affects the
shape of the relationship between LAl and RIE.

RIE=1—¢ XA (2)

It was scaled to rhpap plant architecture trait, which largely affects RIE (Perez et al., 2019).
Notably, the most recent version of Sirius Wheat (SiriusQuality3) directly involves ALA, as
defined in Chapter 1, so the scaling procedure used here will not be necessary any more. This

version is not yet implemented in Sirius Maize but will be in the next month:s.

The second parameter was LUEpre (pre-anthesis LUE), which was scaled to the plant stomatal
conductance (gsmax, presented in Chapter 1). Indeed, LUE is a direct consequence of the ability
of the canopy to photosynthesize, itself related to canopy stomatal conductance (Motzo et

al., 2013; Wang et al., 2022).

Use of the genotypic parameters by Sirius Maize.

Leaf area index was modelled as in Lacube et al. (2020), as a result of processes related to
plant development and leaf elongation and widening (Supplementary Table 1). The areas of
the leaves of each rank on the stem were calculated daily based on the genotype-dependent
parameters presented above (see Methods). Importantly, elongation rate of any growing leaf
rank was calculated from that of leaf 6 (LERa), leading to a profile of leaf elongation rates, on
which the effects of evaporative demand (VPD) and soil water potential (SWP) were applied
by taking into account the corresponding genotype-dependent sensitivities (LERb and LERc,
respectively). This follows studies showing that leaf elongation rate is primarily impacted by

VPD and SWP (Welcker et al. 2011; Lacube et al. 2017).

Grain number was modelled by taking into account the mean daily plant growth rate in
biomass (PGR, g.d1.plant?), estimated during the period from 13 d2o°c before silking to 22 dao-c
after it. Indeed, it was shown that straightforward relations are observed between the PGR
around flowering time and the grain number per plant (Messina et al., 2019; Larrosa & Borras,
2022; Supplementary Fig. 2). Grain number was calculated as a logarithmic function of PGR,

taking into account the genotype-dependent parameter GNmax, Whereas the parameters
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affecting the shape of this function were considered as common to all studied genotypes

(PGRpase and GNy, see methods).

Test of the relevance of simulation results.

A first test was performed, where all indoor platform traits used for deriving genotypic
parameters were measured for all hybrids (Table 1), based on the BLUEs resulting from four
indoor experiments. It was performed on the dataset collected in the genetic progress study
(Welcker et al., 2022). This is a near-ideal case for best accuracy, so this first test can be
considered as the least stringent one. Indeed, the workload associated with this test is
probably not applicable to potential future routine approaches. Simulations were run in 10
field experiments, representing contrasting environmental scenarios for temperature and soil

water status, including two experiments where LAl was derived from UAV imaging.

A second test (performed on the recent hybrid panel) considered the case in which three
traits/parameters were measured (LAR, FLN and GNmax), Whereas all other traits were
obtained via genomic prediction (rhpap, gSmax, LERa, LERb and LERc). Simulations were
performed in 17 field experiments, representing contrasting environmental conditions,

including seven experiments where LAl was derived from UAV imaging.

The last, most stringent test, was performed by using, in the model, the genomic prediction
values of all traits/parameters. The latter were calculated from the cross-validation scheme
(CV1) for the genetic progress panel and, for the recent hybrids panel, from the training sets
collected with the diversity and genetic progress datasets (see Chapter 1). Simulations were

run in the same experiments mentioned before.

Finally, we tested the impact on LAl and GN simulation accuracies of Sirius parameters by
running simulations for genetic progress panel in the same experiments as before, but with
some parameters fixed to the mean value for all hybrids, while the other parameters were

kept as genotype-dependent.
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Results and discussion

Table 2 : Summary of simulation results for LAl and grain number.

Sirius parameterization with Sirius parameterization with
Field measured genotypic values predicted genotypic values
Hiekd ?m}llated Experiments |Genetic progress | Recent hybrids |Genetic progress | Recent hybrids
rait Scenario panel panel panel panel
r rrmse r rrmse r rrmse r rrmse
Cool_WW - - 0.39 24% - - 0.39 24%
Warm_WWwW - - 0.36 12% - - 0.34 12%
Leaf Area Index
(LAI) Hot_WW 0.64 14% 0.48 16% 0.63 13% 0.49 16%
Warm_WD - - 0.36 26% - - 0.37 26%
Hot_WD 0.40 23% 0.21 29% 0.41 25% 0.17 29%
Cool_WW 0.85 15% 0.65 14% 0.74 16% 0.31 14%
Warm_Ww 0.82 16% 0.63 10% 0.73 17% 0.36 12%
Grain Number Hot_WW 0.79 15% 0.56 13% 0.72 16% 0.54 13%
- 2
(grains/m’) Cool_WD 071 | 23% - - 063 | 22% - -
Warm_WD 0.83 41% 0.24 32% 0.74 43% 0.23 32%
Hot_WD 0.78 37% 0.36 35% 0.74 40% 0.39 35%

# Pearson correlation coefficient (r) and relative RMSE (rrmse) values shown are mean values obtained within
the experiments of each environmental scenario. WW, well-watered. WD, Water-deficit.

I) Simulation of leaf area index (LAI)

Sirius Maize accounted for both the genotypic and environmental effects on LAl but with

different accuracies depending on environmental scenarios and considered test.

We first tested the model with the genetic progress dataset, in which all genotypic parameters
derive from measurements (Table 1). Observed values of LAl were derived from UAV
multispectral images at the end of vegetative phase. Tests were performed for two
experiments with contrasting soil water status: MAU2017W (hot well-watered (WW)
scenario) and MAU2017D (hot water-deficit (WD) scenario). The correlation between
observed and simulated LAl values in the hot_ WW experiment ‘MAU2017W’ was high (r=0.64)
with a low relative estimation error (rrmse) of 14% (Fig. 2a, Table 2). The correlation decreased
to r=0.40 in the hot_WD experiment ‘MAU2017D’, with a higher rrmse of 23%, likely due to

an overestimation in LAl simulations here (Fig. 2a, Table 2).
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Fig. 2 : Simulated LAI for the genetic progress panel, with genotype-dependent parameters derived
from measured traits (a, c, d) or genomic prediction (b). a, Simulation results with parameters all
derived from measurements. b, Simulation results with parameters all derived from genomic prediction.
¢, Simulation results with phenology parameters (LAR, FLN) kept as genotype-dependent, and all other
parameters fixed to the mean value of the panel. d, Simulation results with all parameters kept as
genotype-dependent except leaf elongation rate (LERa), fixed to the mean value of the panel.

We then tested the model with the recent hybrids dataset, in which only some traits used for
parameterization were measured (LAR and FLN) while the other genotype-dependent
parameters were estimated via genomic prediction. LAl observed values were derived from
UAV multispectral images at 16-17 leaf stage, in seven experiments with contrasting
environmental conditions : Pus21W (cool_WW), Pus22W and Ouz22W (warm_WW), Mau22W
(hot_WW), Pus22D and Ouz22D (warm_WD) and Mau22D (hot_WD). Correlations between
LAl observed and simulated values ranged from r=0.40 with a low rrmse of 16% on average in
well-watered conditions to r=0.31 with a moderate rrmse of 27% on average in water-deficit
conditions (Fig. 3).

The overall correlation between LAl observed and simulated values across experiments and
environmental scenarios was appreciable in both panels: r=0.61 for genetic progress panel
experiments (Supplementary Fig. 3a) and r=0.59 for recent hybrids panel experiments

(Supplementary Fig. 4a).
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Fig. 3 : Simulated LAI for the recent hybrids panel with genotype-dependent parameters derived
from measured traits for FLN and LAR, and from genomic prediction for the other parameters.
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Altogether, Sirius Maize adequately accounted for genotypic effects variation on LAl in
contrasting environmental scenarios, but accuracies were notably lower in water-deficit
conditions. This was consistent with Bustos-Korts et al. (2019) findings for wheat yield
predicted using a multi-trait model in contrasting environment types, where accuracies also
significantly decreased in water-deficit conditions. This result can be explained either by lower
consistency of estimated values for the traits linked to genotypic responses in water-deficit
conditions, or by the well-known complexity of predicting genotype—environment interactions
(GEls) in water limitation conditions (Chenu et al., 2011). GEls emerge in the case of crop
models from the interconnections and feedback regulations between subsystem components
and physiological processes of the model (Bertin et al., 2010). Regarding the recent hybrids
panel, the expected lower accuracies found were likely due to the lower estimation quality of
parameters predicted by genomic prediction, but also to the lower phenotypic variability in

this panel as discussed in Chapter 1.

LAl simulation accuracies remained nearly unchanged when parameters resulted from

genomic prediction.

The final test involved parameters estimated by genomic prediction only. For the genetic
progress panel, traits genetic values used for parameterization were obtained from the
genomic prediction cross-validation scheme CV1 of Chapter 1. The correlations between
observed and simulated LAI values for the panel remained similar to those obtained when
parameters derived from measurements (Fig. 2b, Table 2). This was the case in both well-
watered (r=0.63, rrmse=13%) and water-deficit conditions (r=0.41, rrmse=25%). These results
can be explained by the fact that the traits (LAR, FLN) mainly affecting LAl genotypic variability
in the panel were highly heritable (hg?>0.60) and could be well predicted via genomic

prediction G-BLUP models.

When parameters used in genomic prediction involved different datasets for the training set
(diversity and genetic progress panels) and prediction set (recent hybrids panel), correlations
between LAl observed and simulated values for the latter panel also remained stable, probably
for the same reasons as before (Fig. 4, Table 2). They ranged from r=0.39 with rrmse of 16%
on average in well-watered conditions to r=0.30 with rrmse of 27% on average in water-deficit

conditions.
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Fig. 4 : Simulated LAl for the recent hybrids panel, with all
parameters estimated via genomic prediction.

genotype-dependent

88



CHAPTER 3

The genotypic variability of LAl in contrasting environmental conditions depended on

phenology and leaf elongation rate.

We tested the impact on LAl simulation accuracies of some Sirius parameters by running
simulations with some parameters fixed to the mean value for all hybrids, while the other
genotype-dependent parameters were kept as they are. This was performed for the genetic

progress panel in the same experiments as before.

The first case involved keeping parameters linked to plant phenology (LAR, FLN) (Fig. 2c) as
genotype-dependent, whereas all other parameters were set to the mean values of the panel
for all genotypes. Here, correlations between LAl simulated and observed values were good
in both well-watered (r=0.69, rrmse=13%) and water-deficit conditions (r=0.47, rrmse=23%).
This is probably due to the fact that, in the genetic progress panel, the main driver of genotypic
differences was the phenology (Welcker et al., 2022). The increase in accuracy compared to
simulations where all genotypic parameters were varied between hybrids may be due to some

inconsistency between the calculated traits values used for parameterization for few hybrids.

The second case involved varying all genotypic parameters except leaf elongation rate ‘LERa’
(Fig. 2d). Here, correlations between LAl simulated and observed values decreased slightly in

both well-watered (r=0.62) and water-deficit conditions (r=0.39).

Overall, our results suggest that Sirius Maize has the potential for predicting LAl for a large set
of genotypes in different environmental conditions. This may potentially result in a high-
throughput and low cost method for simulating LAl for hundreds of genotypes in hundreds of
environments, if the required genotype-dependent parameters are either measured or
predicted from genomic information. However, only some of the measured traits had an
appreciable role for the studied panel, essentially those related to phenology, but also leaf

elongation rate.
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Il) Simulation of grain number (GN)

Sirius Maize accounted for both the genotypic and environmental effects on grain number

per unit area.

As for LAI, we first tested Sirius maize for the case where all genotype-dependent parameters
derived from measurements, in the genetic progress panel (Table 1). Tests were performed
for nine field experiments in six different sites and three years, with contrasting temperature
and soil water status: LEM2017W and VEN2017W (cool_WW scenario); GAI2017W and
NER2013W (warm_WW scenario); MAU2017W (hot_WW scenario); VEN2017D (cool_WD
scenario); GAI2017D and LAV2017D (warm_WD scenario); MAU2010D (hot_WD scenario). We
compared these observed values to those simulated by Sirius maize parameterized with traits
measured indoor (LAR, FLN, rhpap, gsmax, LER and its sensitivities to SWP and VPD) or in the
field (GNmax) (Table 1). The correlations between observed and simulated grain number were
high in all scenarios, ranging from r=0.79 to r=0.86 in well-watered conditions with low
estimation error (rrmse=15% on average), and ranging from r=0.71 to r=0.87 in water-deficit

conditions with a fluctuating estimation error (rrmse=23%—-47%) (Fig. 5, Table 2).

We then tested the model with the recent hybrids dataset, in which only some genotype-
dependent parameters resulted from measured traits (LAR, FLN and GNmax), while the other
parameters were estimated via genomic prediction. Simulation were run for twelve
experiments from ten different sites and two years, presenting contrasting environmental
scenarios : Cra21W and Mat22W (cool_WW); Bin22W, Pus22W and Chr21D (warm _WW),
LMg22W and Cad22W (hot_WW), Pac22D, Chr22D and Ouz22D (warm_WD); LMg22D and
Sek21D (hot_WD). (Fig. 6, Table 2). Correlation coefficients between observed and simulated
values were moderate to high in well-watered conditions (r=0.31-0.84) with low estimation
errors (rrmse=5%—19%), and low to moderate in water-deficit (r=0.11-0.47) with higher and

more variable estimation errors (rrmse=18%—-49%).

The correlation between observed and simulated values across environmental scenarios was
high for the genetic progress dataset (r=0.77, Supplementary Fig. 3b) and lower but still

appreciable (r=0.56) for the recent hybrids dataset (Supplementary Fig. 4c).
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Used Traits for Sirius Parameterization here
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Fig. 5 : Simulated grain number (GN) for the genetic progress panel, with all genotype-dependent
parameters derived from measured traits.
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Sirius maize therefore accounted for genotypic variations of grain number per unit area in
contrasting environmental scenarios, even though accuracies decreased in water-deficit
conditions compared to well-watered conditions as in the case of LAl. The genotypic effects
and GEl effects on leaf growth and biomass accumulation therefore translated into differences
in simulated grain number for the tested genotypes. Interestingly, these simulations, based
on our process-based crop model, had similar accuracies as those achieved by other studies
based either on another crop growth model (e.g. Toda et al., 2020) or on linear mixed models
(e.g. Guo et al.,, 2020). These two studies for instance, found appreciable prediction
accuracies, for genotypes tested in a multi-environment context, when they considered
intermediate physiological traits in their modelling approaches for predicting rice biomass and
wheat yield, respectively.

GN Simulation accuracies decreased but remained appreciable when genotype-dependent
parameters were predicted from genomic information.

We have run here simulations in which all parameters were estimated by genomic prediction
of related traits. The correlations between GN observed and simulated values decreased by
10% on average for the genetic progress panel compared to those when simulations were run
with genotype-dependent parameters derived from measurements (Fig. 7, Table 2). This was
the case in both well-watered (r=0.68-0.79, rrmse=12%—19%) and water-deficit conditions
(r=0.63-0.80, rrmse=22%-51%). These results can be explained by the fact that GNmax was well
predicted via genomic prediction G-BLUP model (robs_pred=0.85). For comparison, studies using
multi-trait or joint regression genomic prediction models for predicting yield showed similar
prediction accuracies : in Bustos-Korts et al. (2019), r ranged from 0.50 to 0.80 depending on
environment types; in Millet et al. (2019), r ranged from 0.43 to 0.85 depending on
experiments. In Cooper et al. (2016) study with a maize GP-assisted CGM method close to our
study approach, prediction accuracies ranged from 0.50 to 0.82 depending on prediction

environments considered.

When parameters genomic prediction involved the use of different datasets for training set
(diversity and genetic progress panels) and prediction set (recent hybrids panel), correlations
between observed and simulated values appreciably decreased (-34% on average, r=0.19—
0.57) with an increase in estimation errors in well-watered conditions (rrmse=8%—-20%, Fig. 8,
Table 2). A likely explanation is that GNmax predicted for recent hybrids was less accurate than

in the case of a cross validation reported in the above paragraph (robs_prea=0.40).

93



CHAPTER 3

For water-deficit conditions though, correlations remained stable and did not get worse than

the case where GNmax and phenology parameters derived from measurements (r=0.10-0.50,

rrmse=19%-49%, Fig. 8).

Finally, the overall correlation between observed and simulated values across environmental

scenarios remained appreciable for both genetic progress panel experiments (r=0.75,

Supplementary Fig. 3c) and recent hybrids panel experiments (r=0.51, Supplementary Fig. 4d).

Used Traits for Sirius Parameterization here
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Fig. 7 : Simulated grain number (GN) for the genetic progress panel, with all genotype-dependent
parameters derived from genomic prediction.
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Fig. 8 Simulated grain number (GN) for the recent hybrids panel, with all genotype-dependent
parameters derived from genomic prediction.
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The genotypic variability of GN in contrasting environmental conditions depended on the

maximum grain number potential and leaf growth rate.

We tested the impact on simulation accuracies of some parameters by running simulations

for genetic progress panel after fixing certain parameters values.

The first case involved varying all genotypic parameters except GNmax (Fig. 9, Supplementary
Fig. 3d). Here, correlations between GN simulated and observed values drastically decreased
(-50% on average) in both well-watered (r=0.32—-0.55, rrmse=17%—25%) and water-deficit
conditions (r=0.15-0.63, rrmse=32%-50%). This confirms the fact that, in the genetic progress
panel, maximum grain number was one of the main drivers of the genetic variability of yield

(Fig. 1; Welcker et al., 2022).

The second case involved varying all genotypic parameters except leaf elongation rate ‘LERa’
(Fig. 10, Supplementary Fig. 3e). Here, correlations between simulated and observed values
decreased to a much lesser extent than before, but estimation errors for some hybrids notably
increased in some experiments (r=0.71-0.88 and rrmse=14%-22% in well-watered conditions,
r=0.62—-0.87 and rrmse=27%—47% in water-deficit conditions, Fig. 10). This illustrates the fact
that simulated grain number is indirectly impacted by leaf growth variability through plant

growth rate (PGR).

Overall, as for LAI, our results suggest that Sirius Maize has the potential for predicting grain
number yield component for a large set of genotypes in different environmental conditions.
This may potentially result in high-throughput and low cost method for simulating grain yield

for hundreds of genotypes in hundreds of environments.
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Used Traits for Sirius Parameterization here
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Fig. 9 : Simulated grain number (GN) for the genetic progress panel, with all parameters kept as
genotype-dependent, except the maximum grain number per plant, GN__, fixed to the mean

value of the panel.
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Used Traits for Sirius Parameterization here
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Fig. 10 : Simulated grain number (GN) for the genetic progress panel, with all parameters kept as
genotype-dependent except leaf elongation rate (LERa), fixed to the mean value of the panel.
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Methods

Calculation of genotype-dependent parameters fed to Sirius Maize.

Thirteen genotype-dependent parameters were considered in our study (Table 1) : phylip, btip,

an1, bi1, Nfinal, atr, stopligul, LERa, LERb, LERc, kI, LUEpre and GNmax.

The genotype-dependent thermal time between the emission and ligulation of two
consecutive leaves derived from LAR (phyllochron ‘phylsi,’= 1/LAR and ligulochron ‘ain’= 1/LAR,
respectively). The genotype-dependent parameters describing the beginning and end of these
processes and the shape of their relation to thermal time were calculated as follows :
bip= phylip X (-1.35)= intercept of the regression of thermal time with tip appearance ;
biz= amn — 10= intercept of the regression of thermal time with ligulation ; aw= 3/Nfinai=
transition between the two linear parts describing leaf ligulation with thermal time relative to

Nfinal ; stopLigul= 3/Nsinai= fraction of Nsinat Which stops growing and ligulates together).

The elongation rate of leaf 6 (LERa) was derived from plant LER (max leaf expansion rate)
measured in well-watered indoor experiments, with this empirical regression equation :
LERa= LER x 0.0147 + 4.87. LERb was estimated as the slope of the linear regression between
leaf elongation rate and VPD in indoor experiments with a time definition of one hour. LERc
was estimated as the slope of the linear regression between leaf elongation rate and SWP in

indoor experiments with a time definition of one day.

The parameter kl was scaled to rhpap trait, by varying kl maize species reference value from
one genotype to the other, by multiplying kl for each genotype by a coefficient equal to the
ratio between the genotype rhpap value and rhpap mean value of the whole studied panel.
LUEpre (pre-anthesis LUE) was scaled to plant max stomatal conductance trait (gsmax), by
varying LUEpre maize reference value from one genotype to the other, by multiplying LUEpre
for each genotype by a coefficient equal to the ratio between the genotype gsmax value and

gsmax mean value of the whole studied panel.

LAl modelling in Sirius Maize.

Leaf area index was modelled as in Lacube et al. (2020), as a result of processes related to
plant development and leaf elongation and widening. LAl is indeed calculated daily depending

on the dimensions (width and length) of different leaf ranks, after estimating their exposed
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fraction and considering plant density. Modelling the expansion of individual leaves requires
identification of the dates at which leaf elongation and widening begin and end, for each leaf
rank. The dates of beginning of leaf elongation were linked to those of leaf tip appearance,
and the dates of end of leaf elongation to those of ligule appearance. These dates are
estimated for each genotype using the genotypic parameters related to plant phenology

described above (Supplementary Table 1).

During the period of leaf elongation, the elongation rate of any growing leaf of the plant is
calculated from that of leaf 6 leading to a profile of leaf elongation rate normalized by the
maximum rate of leaf 6 (LERa parameter). The distribution of normalized elongation rates
along leaf ranks is fitted via a beta function with parameters depending on Niinal
(Supplementary Table 1). The effects of evaporative demand (VPD) and soil water potential
(SWP) are applied on the normalized leaf elongation rates, along with genotypic sensitivities

to VPD (LERb parameter) and to SWP (LERc parameter) (Supplementary Table 1).

The time course of leaf widening is similar to that of elongation but ending before it (Lacube
etal., 2017). The profiles of leaf width are also dependent on leaf rank via a beta function with
parameters related to Nrfnai (Supplementary Table 1). The width of individual leaves is
calculated as a function of two genotypic parameters : a base width of leaf 6 (Ws) and a
sensitivity to intercepted light (rrap). The latter parameters were fixed for all genotypes in our

study because their values were not available for considered panels.

Grain number modelling in Sirius Maize.

Grain number (GN) was calculated as a logarithmic function of mean plant growth rate ‘PGR’
around flowering time (Supplementary Fig. 2), taking into account GNmax (Mmaximum grain
number per plant), with a minimum PGR (PGRepase) at which grain number starts to increase;
and a parameter of shape (GNk), the PGR at which 50% of GNmax is reached:

GN = GNpuy X (1 — e~ GNiX(PGR=PGRpgse)) (3)

GNmax was estimated for each hybrid as described before and the shape parameters GN¢ was
kept common to all genotypes. PGRoase parameter was also fixed for all hybrids in our study.
Grain number per square meter was calculated by taking into account the corresponding plant

density.
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Simulation tests accuracies.

We assessed Sirius simulation accuracies for LAl measured by inversion of the PROSAIL model
(see Chapter 1) and grain number (GN) estimated by dividing grain yield by individual grain
weight for each hybrid. We calculated Pearson correlations (r) between observed and
simulated values of the traits and root mean squared error of simulations (rmse), expressed

as a percentage of mean observed value (rrmse).
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Supplementary Table. 1 : Synthesis of equations and parameters for phenology
and leaf area modeling based on Lacube et al., 2020.

Process Equation Parameter Description Value
Final leaf number Measured Nl Maximum number of leaves Genotypic
Tip appearance tt;p: thermal time at the =1 Slope of the regression of thermal time with tip Genotypic
appearance of leaf n appearance (i.e. phyllochron, thermal time
Equation 1: between subsequent leaf tip appearances)
tyeln)=ag xN+Dg, Dy Intercept of the regression of thermal time with tip  Genotypic
appearance
Beginning of linear tt,;: thermal time at the Ky Ratio between leaf appearance and linear 0.708
expansion beginning of elongation expansion for the last leaves
Equation 2: Net_iim Transition between first and last leaves for 6
If n<MNy_gm beginning of leaf linear expansion
thyl)=ttoln)
Equation 3:
If 12> Ny jin
tpdn)=ayxn+by
8p=Ky Byp
b=byp+Nei_im*@gpx (1K)
Ligule appearance tt: thermal time at the ay Slope of the regression of thermal time with Genotypic
appearance of ligule ligulation (i.e. thermal time between subsequent
Equation 4: leaf ligule appearances)
If: n<oyxNgg by Intercept of the regression of thermal time with Genotypic
ttdn)=ayy xn+by; ligulation
Equation 5: Kbl Ratio between the two ligulation slopes with 0.454
If: ot Ninal thermal time
ty(n)=apxn+by; oy Transition between the two linear parts describing  0.52
A=Ky xay leaf ligulation with thermal time relative to Ny
D1 15=Dys+ap x e Nina<(1—)
End of linear tt.: thermal time at the end of Niast Number of last leaves that finish their expansion at 2
expansion linear elongation the same thermal time
Equation 6: Ay Relative thermal time difference per leaf between 5.4
If n<MNgrarMNiaa+1 ligulation and end of expansion
tty(n)=thin}-agxn
Equation 7:
If >MNgna—Njag+1
ttaln)=tta(n-1)
Beginning and end of g, and tt,,q,: thermal time for  lag, Thermal time lag between ends of leaf elongation 39

widening

beginning and end of widening

Equation 8:

tliag i (M)=ttes (1)
Equation 9:

tend.w (M)=tta (NHagy

and widening
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Supplementary Table. 1 (continued) : Synthesis of equations and parameters for
phenology and leaf area modeling based on Lacube et al., 2020.

Process Equation Parameter Description Value
Leaf L: leaf length ag Maximum leaf elongation rate of leaf 6 Genotypic
elongation Equation 10- b Sensitivity of leaf elongation rate to vapour Genotypic
d .
L(nd)= Y LER(n) pressure deficit
emergence e . ; .
G Sensitivity of leaf elongation rate to soil water Genotypic
LER: leaf elongation rate deficit
LER, .: normalized maximum leaf
elongation rate (normalized by
maximum rate of leaf 6) ) Be Coefficient detemmining the rank of the leaf with ~ 0.68
Equation11: ER (n) =6 *Q%L maximum growth relative to final leaf number
nom -
b= —r
B =P xNpwa
GLleLXNIhaJ
Equation 12: 0, Coefficient determining the skewness 0.46
If thy<tt<tty; of the curve or potential leaf growth
LER()=LER, o) x(a5+0 VPD+CPSI)x Att relative to final leaf number
VIPD: vapour pressure deficit (kPa)
PSI: soil water potential (MPa)
Ait: equivalent thermal time of day d (°C.d)
tt: cumulated thermal time at day d (°C.d)
Leaf widening W: leaf width RAD e Base value for radiation effect on leaf 0.15
Equation 13: widening
W(r, 0= Wase(r1)+RADeeat(c) W Base leaf width of leaf 6 Genotypic
Wiase: leaf width at intercepted light of 0.15 M rpyp Sensitivity of leaf widening to inter- Genotypic
RAD . effect of intercepted light on leaf width cepted radiation
Equation 14: i Coefficient determining the rank of the 0.41
leaf with maximum base width relative
AADstict(d) = Trap * (RAD id) - RAD"”‘J to final leaf number
Coefficient determining the skewness 0.69

RAD; mean daily plant intercepted radiation from Oy

g tO 1t
Equation 15:

= n - 8y’
W pase(n) = Were 287
Bu= P wxNina
Gy=0yx Ny

of the curve of base width relative to
final leaf number
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Supplementary Fig. 1 : Global overview of the interaction between SiriusQuality2 components.
Boxes are regular C# projects, circles are BioMa components and the rounded box is a storage
class. The entry points of the diagram are the Sirius View project and the Sirius Console project.

1000
Z 800 |
]

L
- 600 P
Qv
0
£
> 400
]
c
o 200 F
"4
0

0 1 2 3 4 S
Plant growth rate (g pl?)

Supplementary Fig. 2 : Simulated association between kernel (grain) number per plant and mean
plant growth rate (PGR) over a 20-day period bracketing anthesis (filled circles). Lines correspond
to statistical models fitted to experimental data for different hybrids and years (Messina et al.
2019). Correlation calculated between simulated and mean observed kernel number (r = 0.88,
n = 4). Observed plant growth rate at which kernel number equals 0 is 0.74 + 0.22 g per plant.
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Supplementary Fig. 3 : Overall correlations between simulated and observed values for LAl (a) and
grain number (b-f) across genetic progress panel field experiments. In a & b, genotype-dependent
parameters derived from measured traits. In ¢, genotype-dependent parameters derived from
genomic prediction. In d, genotype-dependent parameters derived from genotypes measured traits,
except maximum grain number (GN__ ) fixed to the mean value of the panel. In e, genotype-

dependent parameters derived from genotypes measured traits, except leaf elongation rate 'LERa'
fixed to the mean value of the panel. One dot, one hybrid in one experiment.
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The main objective of my thesis was to develop and evaluate a new approach for predicting
maize varieties complex field traits (LAl and grain yield) across multiple environments. This
approach combined statistical genomic prediction models, phenomics methods developed
recently and a novel crop growth model (Sirius Maize). The originality of this work was to
combine different methods (quantitative genetics, statistics, phenomics and ecophysiology)
and to carry out all the necessary steps for developing and testing the approach. These steps
included : designing and monitoring indoor and multi-site field experiments; collecting and
analysing phenotypic, genotypic and envirotypic datasets; calculating physiological traits;
calibrating genomic prediction models; parameterizing the crop growth model and performing

several simulation tests

A link between indoor phenotyping and field crop performance

We provided in this thesis insights for how indoor phenotyping can be linked to crop
performance in the field. Indeed, indoor phenotyping allowed us to measure at high
throughput structural and adaptive traits related to plant phenology, architecture, leaf growth
and its responses to environment. We showed that these traits can be translated in field for
hundreds of genotypes if three main conditions are met. Firstly, traits measured indoor should
be heritable and genetically correlated to those in fields, regardless of absolute values. This
was showed in our study, either when the considered trait was measured with similar
protocols indoor and in the field (e.g., LAR), when the trait was measured with different
methods (e.g., architecture traits) or when the trait was more complex (e.g., LAl) and required
a method involving crop modelling. Secondly, the absolute values of indoor traits should
translate to that in fields with diverse environmental scenarios, either directly or via crop
models that take into account differences in environmental conditions. Finally, indoor traits
need to be predictable with sufficient accuracy from the genomic information of non-
phenotyped genotypes. Here, cross-validation based on a large genetic range panels showed
good results (with r ranging from 0.56 to 0.84 for the studied traits). These findings open new
prospects in speed breeding (Watson et al., 2018, 2019; Alahmad et al., 2018; Samantara et
al., 2022), by allowing screening genetic material for high or low values of adaptive traits,

conferring either spender or conservative strategies for water use under future climates.
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Estimation of genotype-dependent parameters of CGMs

Using crop growth models simulations for defining ideotypes (optimal combinations of
genotypes x environments x management practices), requires a dialogue between CGMs
formalisms and phenomic methods for measuring genotype-dependent CGM parameters of
hundreds of genotypes in phenotyping facilities (Tardieu et al., 2017; Wang et al., 2019;
Lacube et al., 2020). Despite the long history of CGMs, no common good ways exist for
choosing genotype-dependent parameters (Onogi, 2022), while CGMs ability to describe
phenotypic variations depends on these chosen parameters (Yin et al., 2000; Bannayan et al.,
2007). A usual practice to determine genotype-dependent parameters is to adopt knowledge
garnered from the published literature. In previously reviewed studies using CGMs, the
number of parameters chosen as genotype-dependent ranged from 3 to 12. Another method
is to identify parameters that cause large variations in phenotype via sensitivity analyses
(Quilot et al., 2005), even though genetic aspects are lacking in this procedure. In our study,
we used 8 traits (leaf appearance rate, final leaf number, max leaf expansion rate, rhpap
architecture trait, max stomatal conductance, leaf elongation sensitivity to VPD, leaf
elongation sensitivity to SWP and max grain number per plant) to estimate 13 genotype-
dependent parameters of Sirius Maize model. These were chosen based on literature
knowledge about Sirius model processes and for the practical reason of being able to measure
them at high-throughput. Some of the traits corresponded directly to Sirius parameters; other
parameters were deduced via simple equations or regressions with measured traits and two

parameters were scaled to traits.

In GP-assisted CGM methods, two approaches for genomic prediction of parameters can be
used: joint or independent (Onogi, 2022). The independent approach is easier to implement,
but the joint approach can present the advantage that uncertainty in some CGM parameters
estimation can be compensated by using a joint multi-trait GP, especially when GP training
data sets are of small size (Onogi, 2020). In our thesis study, we predicted the genotypic
parameters independently as they were not all acquired from the same experiments, but a

joint approach can be tested later.
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A novel GP-assisted CGM method for predicting leaf area index and grain

number in maize

A key consideration for successful application of the GP-assisted CGM methodology is the
availability of a suitable CGM that can be used to incorporate the genetic variation of
physiological effects and environmental responses for the input traits, that influence the
genetic variation of a target simulated trait such as yield (Cooper et al., 2016). Ultimately, the
GP-assisted CGM method can only be as good as the CGM used to represent the genetic
variation for the target trait. In our study, we benefited from the Sirius Maize CGM derived

from SiriusQuality2 (Jamieson et al., 1998; Martre et al., 2006).

Up to now, we were able to parameterize Sirius Maize for tens of varieties and test the
consistency of our GP-assisted CGM approach for simulating leaf area index and grain number
yield component, in contrasting environmental conditions. Tests were run in different cases
assumed to be more or less stringent, including a case where only genomic prediction values
of all traits/parameters were used in the CGM. Grain number simulation accuracies for the
genetic progress panel, in the latter case, ranged from 0.63 to 0.80 depending on
environmental scenarios. These findings were comparable for example with the CGM-assisted
GP method results of Bustos-Korts et al. (2019), where dynamics of biomass and canopy cover
for wheat genotypes were simulated using APSIM, then parametric traits were extracted from
these dynamics and used in a multi-trait GP model for predicting grain yield. Prediction
accuracies in the latter study ranged from 0.50 to 0.80 depending on environment types.
Additionally, as a benchmark, our maize GP-assisted CGM results can be compared to
prediction accuracies obtained for the same maize panels, using a joint regression GP model

which considers environmental covariates (Millet et al., 2019).

An advantage of the GP-assisted CGM approach is the inclusion of observed intermediate
input traits in the CGM, which enables us to consider parameters in the model as
representations of plant biology. As suggested by Cooper et al. (2016), for approximation, the
GP-assisted CGM methodology can be viewed as a special case of a broader neural network
approach (Crossa et al., 2019; Costa-Neto et al., 2021) for extending additive GP methods to
deal with non-additive effects of the target trait. Both can be represented as a network
diagram. In the neural network framework, the intermediate nodes would correspond to the

component physiological traits. In the case of the GP-assisted CGM method, the mapping from
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SNPs to intermediate nodes to the output trait yield is defined by the CGM instead of
arbitrarily derived from the data at hand as in the case of the neural network. An important
difference between the neural network and the CGM is that there are functions in the
biological network that the neural network method could suppress, while this is not possible
in a CGM. The fact that the GP-assisted CGM correctly predicts the mean and the range of the
target trait in the simulated environments while parameterized using data from indoor
experiments or other field environments, and was sensitive to specified meteorological, soil
and management data inputs, shows that the physiological and environmental information is

being used by the CGM in the GP-assisted CGM methodology.

Use of GP-assisted CGMs remains though a new approach that needs further development
and benchmark to reach its potential for phenotype prediction and ideotyping. Issues to be
considered for prediction accuracies levels of the method include : (i) the choice of the CGM;
(ii) the choice of the genotype-dependent parameters of the CGM, (iii) the accuracy of the
CGM parameters estimation, (iv) the relationships (or similarities) between target and training
environments (Onogi, 2022). Moreover, a fundamental assumption for use of CGMs for GEls
analyses is that genotype-dependent parameters are assumed to be constant among
environments and differences of phenotypes of a genotype (i.e., reaction norms) are brought
about by environmental conditions via the CGMs. However, this assumption does not always

hold (Lamsal et al., 2018).

Further upgrades of the thesis GP-assisted CGM method

The work that remains to be done includes modelling individual grain weight yield component
with Sirius Maize, which is determined during grain filling phase. This would then enable us to
simulate grain yield for the same panels and environmental scenarios, as for leaf area index

and grain number.

Another upgrade of the model is the use of the parameter PGRpase in grain number calculation.
PGRpase represents the minimum plant growth rate at which grain number takes values above
0. In the current work, this parameter was fixed for all genotypes, but is expected to vary
between genotypes in such a way that the most sensitive hybrids to water deficit for grain
number would be those with highest sensitivity of leaf growth to water deficit (Welcker et al.,

2011; Turc et al., 2016). This may improve simulation accuracies in water-deficit conditions.
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Finally, the set of genotype-dependent parameters provided to the CGM and their calculations

will be optimised, after considering more experiments and genotypes (diversity panel).

Toward application in breeding or variety recommendation contexts

Our results can be considered as promising and open new possibilities for tackling the
genotype by environment interaction and ideotyping, either in a plant breeding or a variety
recommendation to farmers context. Indeed, our GP-assisted CGM approach may represent
a new high-throughput tool for evaluating in silico the performance of hundreds of maize
genotypes in hundreds of environments, given that the required genotype-dependent CGM

parameters are either measured or predicted from genomic information.

In commercial maize breeding programs, genomic prediction is now used routinely as an
integrated component (Cooper et al.,, 2014, 2021). Combining GP with a CGM into an
integrated prediction method (GP-assisted CGM) presents interesting opportunities to
combine crop physiology knowledge and plant breeding to tackle the genetic improvement of
complex traits such as grain yield, for multiple or specific target scenarios defined as
combinations of environments and management practices (Cooper et al., 2016, 2023). Crop
physiology has helped to explain how structural and functional traits variation contribute to
long term yield gains and has identified putative sources of traits genetic variation that could
be important for further genetic improvement of yield in drought-prone environments and
future climates (Welcker et al., 2022; Garcia et al., 2023). Physiologists have advocated the
use of such traits for screening genetic material in breeding programs. However, few, if any,
have been scaled and routinely adopted by breeders as integrated components of their
breeding programs (Cooper et al., 2016). The GP-assisted CGM methodology provides an
opportunity to overcome some of the limitations that are associated with developing and
applying additional physiological traits screening within a breeding program (Hammer et al.,
2006). The cost and effort involved in developing an appropriate CGM for specific breeding
program objectives has to be weighed against the importance of GEls and other sources of

non-additive variations of the target trait (Cooper et al., 2016).

For the variety recommendation context, there is an increasing demand from farmers to have
access to integrative decision support tools that can help in their decisions regarding cropping

and field management practices, including variety choice. This demand is rising especially in
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the context of more fluctuating environmental conditions due to climate change, increasing
frequency of heat and drought waves, in addition to agriculture policies supporting inputs
reduction. As a complement to information produced for farmers based on classical multi-
annual trials networks performed by applied research organisms (such as ARVALIS), the GP-
assisted CGM in silico method may represent a valuable additional tool for enhancing
recommendation to farmers, mainly by testing in silico multiple combinations of varieties,

field environmental conditions and management practices.
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ANNEXE EN FRANCAIS

Thése de Jugurta BOUIDGHAGHEN (2020-2023):

Prédiction de la performance de variétés de mais en conditions
environnementales contrastées par combinaison de phénomique,
prédiction génomique et modele de culture

Objectifs de la these

L'objectif de la these est de développer et d'évaluer une méthode pour prédire le rendement
d'un grand nombre de variétés de mais dans des environnements multiples, en utilisant les
connaissances scientifiques accumulées sur la réponse aux conditions environnementales.
Pour atteindre cet objectif, nous avons combiné des modéles de prédiction génomique, de
nouvelles approches phénomiques et un modéle de culture (Sirius Maize). Cette méthode a,
potentiellement, la capacité d’aboutir a un nouvel outil efficace pour simuler la performance
de centaines de génotypes de mais dans des centaines d'environnements, que ce soit dans le
contexte de I'amélioration ou I’évaluation variétale pour les agriculteurs. Cette these a été
réalisée en partenariat avec ARVALIS, un organisme de recherche appliquée pour les
agriculteurs en France, spécialisé dans les grandes cultures, dont notamment les céréales a
paille et le mais. Sa mission principale est de proposer des solutions agronomiques efficaces
dans une multiplicité des scénarios. Cela inclut le choix variétal et les pratiques culturales, ainsi
gue des solutions économiques, environnementales et sanitaires, qui sont ensuite
communiquées aux agriculteurs, pour les aider a faire face aux défis actuels tels que le

changement climatique, les demandes sociétales et les exigences commerciales du marché.

La premiére étape de notre étude avait pour objectif d'analyser les caractéres mesurés lors
d'expériences menées en plateforme de phénotypage haut-débit sous serre. Trois panels
d'hybrides de mais ont été analysés pour cela : un "panel de diversité" avec 246 hybrides
(Millet et al., 2019), un "panel progres génétique" composé d’une série historique de 56
hybrides commerciaux (Welcker et al., 2022) et un "panel d'hybrides récents" comprenant 86
hybrides commercialisés entre 2008 et 2020 (la plupart des mesures en plateforme ayant été

effectuées sur seulement 20 hybrides contrastés, pour ce dernier panel). Nous avons montré
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que les valeurs génotypiques des caractéres mesurés en plateforme sous serre étaient
corrélées avec les valeurs au champ, soit directement, soit par le biais de modéles
écophysiologiques simples. Nous avons ensuite examiné si les mesures des caractéres
effectuées en plateforme peuvent servir a entrainer des modeles de prédiction qui estiment
les valeurs génotypiques des caractéeres sur la base des informations génomiques (génotypage

SNP 600k) uniqguement.

L’objectif de I'étape suivante était d'analyser I'ensemble des données collectées dans le cadre
d’un réseau d’essais multi-site pour le panel d'hybrides récents. Nous avons inclus ici les
données au champ collectées dans le cadre du projet européen INVITE sur un sous-ensemble
de 30 variétés du panel d'hybrides récents. Il s'agit de 33 essais, définis comme des
combinaisons de site x année x conduite, répartis a travers |'Europe, en conduites pluviales et
irriguées. Nous avons caractérisé les conditions environnementales subies par les plantes dans
chaque champ a l'aide de capteurs météorologiques et de capteurs tensiométriques du sol.
Nous avons estimé des indices environnementaux et assigné les essais a des scénarios
rencontrés en maisiculture a I'échelle européenne. Nous avons également calculé un
caractére qui est un parameétre essentiel du le modéle Sirius Maize, a savoir le nombre
maximal de grains par plante de I’hybride considéré. Nous avons aussi analysé l'indice foliaire
(LAI) dans des essais contrastés, dérivé d’imagerie par drone et l'inversion du modele
‘PROSAIL’ (Berger et al., 2018 ; Blancon et al., 2019). Enfin, nous avons estimé les sensibilités
génotypiques du nombre de grains au potentiel hydrique du sol et aux températures

maximales pendant la phase de floraison a I'aide d'un modele de régression linéaire.

L'objectif de la derniere étape était de tester I'efficacité de notre approche, qui vise a simuler
la performance de centaines de génotypes dans des centaines d’environnements en
combinant la phénomique, la prédiction génomique et la modélisation des cultures. La
spécificité ici était de réaliser des simulations basées sur un modele de culture dont les
parameétres génotype-dépendants proviennent des caractéres présentés dans les étapes
précédentes. Toutefois, par contrainte de temps, notre étude s'est limitée a la premiere partie
du cycle cultural du mais, avec des simulations effectuées pour l'indice de surface foliaire et
le nombre de grains pour des dizaines de variétés dans des conditions environnementales

contrastées. Nous avons utilisé pour cela le modele de culture 'Sirius Maize'.
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Principaux résultats

Les caractéres adaptatifs du mais mesurés en plateforme sous serre peuvent
étre inférés dans différents champs et prédits par des modéles de prédiction
génomique.

Plusieurs caracteres ont été analysés dans la these, liés a la phénologie (vitesse d’apparition
des feuilles et durée de phase végétative), a l'architecture des plantes (rhpap) ou a la croissance
foliaire (vitesse d’expansion foliaire, LAI). Des corrélations étroites ont été observées entre les
valeurs génotypiques des caractéres mesurés en plateforme de phénotypage sous serre et
dans des essais multi-sites au champ. C'était le cas lorsque le caractére considéré était mesuré
avec des protocoles similaires sous serre et au champ, par exemple la vitesse d’apparition des
feuilles ou la durée de la phase végétative. C'était également le cas lorsque le caractere était
mesuré a |'aide de méthodes différentes, comme dans le cas de I'architecture des plantes.
Enfin, I'indice foliaire, qui dépend fortement de la densité des plantes et des conditions
environnementales dans le couvert considéré, a nécessité une méthode impliquant la
modélisation de la culture. Les corrélations observées dans ces trois cas entre plateforme sous

serre et champs allaient de 0,57 a 0,77.

Les valeurs des caractéres ont été transposées des conditions sous serre a une diversité de
champs, quand les différences de conditions environnementales ont été prises en compte par
le biais d'un modele. La modélisation des effets de la température a permis par exemple
d'assurer la correspondance des valeurs entre les essais au champ et en plateforme sous serre
pour la vitesse d'apparition des feuilles et la durée de la phase végétative. La quantité de
lumiére interceptée était également nécessaire pour que d'autres caractéres soient cohérents
entre les expériences. C'était le cas ici pour la largeur des feuilles de mais mesurée en
plateforme sous serre et dans plusieurs champs. L'état hydrique de la plante était, en outre,
nécessaire dans certains cas pour tenir compte des différences dans les caracteres liés a la
croissance des organes. C'était le cas ici pour la longueur des feuilles en fonction de la
demande évaporative (VPD de I'air). La vitesse d’élongation des feuilles était étroitement liée

a une combinaison du potentiel hydrique du sol et du déficit de saturation de I'air.

Enfin, la prédiction génomique menée par validation croisée sur les panels de diversité et

progrés génétique ont donné de bons résultats avec des coefficients de corrélation entre
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valeurs observées et prédites allant de 0,56 a 0,84 pour les caractéres étudiés. La validation
externe sur le panel de variétés hybrides récentes a fourni des résultats moins précis, mais les
corrélations entre les valeurs prédites et observées étaient toutefois majoritairement

significatives, allant de 0,34 a 0,71.

Le modele ‘Sirius Maize’, paramétré avec des valeurs de caractéres mesurées
ou prédites par prédiction génomique, a permis de simuler 'indice foliaire et
le nombre de grains avec une bonne qualité prédictive, pour un large nombre
d’hybrides dans des conditions environnementales contrastées.

Nous avons testé le modele ‘Sirius Maize’ avec les données du panel progres génétique, pour
lequel tous les paramétres génotypiques proviennent de mesures.

Pour l'indice foliaire, les valeurs prédites ont été comparées avec des valeurs dérivées
d'images multi-spectrales de drone a la fin de la phase végétative. Les simulations ont été
réalisées pour deux essais au champ : MAU2017W (conditions hydriques favorables ‘WW’) et
MAU2017D (déficit hydrique ‘WD’). La corrélation entre les valeurs observées et simulées
dans l'essai ‘MAU2017W’ était élevée (r=0,64). La corrélation a diminué a r=0,40 en déficit
hydrique, pour l'essai ‘MAU2017D’, mais elle est restée significative, avec une erreur
d’estimation légerement plus importante.

Pour le nombre de grains par unité de surface, les simulations ont été réalisées pour neuf
essais au champ: LEM2017W et VEN2017W (scénario cool_WW) ; GAI2017W et NER2013W
(scénario warm_WW) ; MAU2017W (scénario hot_ WW) ; VEN2017D (scénario cool_WD) ;
GAI2017D et LAV2017D (scénario warm_WD) ; MAU2010D (scénario hot WD). Les
corrélations entre le nombre de grains observé et simulé étaient élevées dans tous les
scénarios, allant de r=0,79 a r=0,86 dans des conditions hydriques favorables avec une faible
erreur d'estimation (rrmse=15% en moyenne), et allant de r=0,71 a r=0,87 dans des conditions

de déficit hydrique avec une erreur d'estimation fluctuante (rrmse=23%—47%).

Nous avons aussi testé le modeéle de culture lorsque tous ses parameétres génotype-
dépendants sont estimés par prédiction génomique pour le panel progrés génétique. Les
valeurs génétiques des caracteres utilisées ici pour la paramétrisation ont été obtenues a
partir des schémas de validation croisée évoqués précédemment. Les corrélations entre les
valeurs observées et simulées d’indice foliaire pour le panel sont restées similaires a celles

obtenues lorsque les parameétres sont dérivés de mesures, aussi bien dans les conditions
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hydriques favorables (r=0,63) qu’en déficit hydrique (r=0,41). Pour le nombre de grains, les
corrélations entre les valeurs observées et simulées ont diminué de 10 % en moyenne pour le
panel, par rapport a celles des simulations effectuées avec des valeurs des parametres
génotypiques mesurées. C'était le cas dans les conditions hydriques favorables (r=0,68-0,79,

rrmse=12%-19%) et dans les conditions de déficit hydrique (r=0,63-0,80, rrmse=22%-51%).

Discussion générale et conclusion

L'originalité de cette thése a été de combiner différentes méthodes (génétique quantitative,
statistiques, phénomique et écophysiologie) et de réaliser toutes les étapes nécessaires pour
développer et tester une nouvelle approche prédictive des caractéres au champ. Ces étapes
comprenaient : la conception et le suivi d'expériences en plateforme de phénotypage sous
serre et sur plusieurs sites au champ; la collecte et I'analyse d'ensembles de données
phénotypiques, génotypiques et environnementales ; le calcul de caracteres physiologiques ;
la calibration de modeéles de prédiction génomique ; le paramétrage de modeéle de culture et

la réalisation de plusieurs tests de simulation.

Un lien entre le phénotypage en plateforme sous serre et la performance des

cultures au champ.

Dans cette thése, nous avons montré comment le phénotypage en plateforme sous serre peut
permettre d’évaluer la performance des cultures au champ. En effet, le phénotypage sous
serre nous a permis de mesurer a haut débit des caractéres liés a la phénologie de la plante,
a son architecture, a la croissance des feuilles et a ses réponses a I'environnement. Nous avons
montré que ces caractéres peuvent étre inférés au champ pour des centaines de génotypes si
trois conditions principales sont remplies. Premiérement, les caractéres mesurés en
plateforme doivent étre génétiguement corrélés a ceux au champ (indépendamment des
valeurs absolues), de sorte que la sélection des génotypes en plateforme soit pertinente pour
les conditions du champ. Deuxiemement, la valeur absolue des caractéres mesurés en
plateforme doit correspondre a celle des caractéres mesurés au champ dans divers scénarios
environnementauy, soit directement, soit par I'intermédiaire de modeles. Enfin, les caracteres
de plateforme doivent étre prédits avec suffisamment de précision a partir des informations

génomiques des génotypes non phénotypés. Ces résultats ouvrent de nouvelles perspectives
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en matiére en sélection rapide (Watson et al., 2018, 2019), en permettant de cribler le
matériel génétique pour des valeurs élevées ou faibles de caractéres adaptatifs, conférant des

stratégies soit dépensiéres soit conservatrices pour I'utilisation de I'eau sous les futurs climats.

Estimation des parametres génotype-dépendants des modeéles de culture.

L'utilisation de modeéles de culture pour définir des idéotypes (combinaisons optimales de
génotypes x environnements x pratiques culturales) nécessite un dialogue entre les
formalismes des modeles de culture et les méthodes phénomiques pour mesurer les
parametres génotype-dépendants de centaines de génotypes dans les plateformes de
phénotypage (Tardieu et al., 2017 ; Lacube et al., 2020). Malgré la longue histoire des modeles
de culture, il n'existe pas de bonnes méthodes pour choisir les parameétres dépendants du
génotype (Onogi, 2022), alors que la capacité de ces modeles a décrire les variations
phénotypiques dépend de ces parametres. Une pratique habituelle pour déterminer les
parametres dépendants du génotype consiste a adopter les connaissances tirées de la
littérature. Dans les études publiées utilisant les modéles de culture combinés a la prédiction
génomique, le nombre de parametres choisis comme dépendants du génotype variait de 3 a
12. Une autre méthode consiste a identifier les paramétres qui causent de grandes variations
dans le phénotype via des analyses de sensibilité (Quilot et al., 2005), méme si les aspects
génétiques sont absents dans cette procédure. Dans notre étude, nous avons utilisé huit
caracteres (la vitesse d'apparition des feuilles, le nombre final de feuilles, la vitesse
d'expansion foliaire, un caractere d'architecture rheap, la conductance stomatique maximale,
la sensibilité de I'élongation foliaire au VPD et au potentiel hydrique du sol, et le nombre
maximal de grains par plante) pour estimer treize paramétres dépendants du génotype du
modele ‘Sirius Maize’.

Une nouvelle méthode combinant modeéle de culture et prédiction génomique
pour prédire l'indice foliaire et le nombre de grains chez le mais.

Une considération essentielle pour une application réussie de la méthodologie développée
dans la these est la disponibilité d'un modeéle de culture approprié, qui peut étre utilisé pour

incorporer la variabilité génétique de caracteres physiologiques clés et la répercuter sur la

variation génétique d’un caractere complexe simulé comme le rendement. Dans notre étude,
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nous avons bénéficié du modele de culture ‘Sirius Maize’ développé au LEPSE a partir de

SiriusQuality2 (Jamieson et al., 1998 ; Martre et al., 2006).

Dans cette thése, nous avons paramétré Sirius Maize pour des dizaines de variétés et testé
I'efficacité de notre approche, combinant modele de culture et prédiction génomique, pour
simuler l'indice foliaire et la composante de rendement ‘nombre de grains’, dans des
conditions environnementales contrastées. Les tests ont été effectués dans différents cas plus
ou moins stringents, y compris un cas ou seules les valeurs de prédiction génomique de tous
les caractéres/parametres étaient utilisées dans le modele de culture. Dans ce dernier cas, les
précisions de simulation (r) du nombre de grains pour le panel progrés génétique allaient de
0,63 a 0,80 en fonction des scénarios environnementaux. Ces résultats sont comparables, par
exemple, a ceux de I'étude Bustos-Korts et al. (2019), ou la dynamique de la biomasse et du
couvert végétal pour des génotypes de blé a été simulée a I'aide du modéle de culture ‘APSIM’,
puis des parameétres ont été extraits de ces dynamiques et utilisés dans un modeéle de
prédiction génomique multi-caractéres pour prédire le rendement. Dans cette étude, les

précisions de prédiction allaient de 0,50 a 0,80 en fonction des types d'environnement.

Un avantage de I'approche de la these est l'inclusion de caractéres intermédiaires observés
dans un modele de culture, ce qui nous permet de considérer les parametres du modele
comme des représentations de la biologie de la plante. Comme le suggerent Cooper et al.
(2016), la méthodologie combinant modeéle de culture et prédiction génomique peut étre
considérée comme un cas particulier d'une approche d’apprentissage profond de type ‘réseau
de neurones’ (Crossa et al., 2019 ; Costa-Neto et al., 2021), qui tient compte des effets non
additifs sur le caractére prédit. Dans le cadre du réseau de neurones, les noeuds intermédiaires
correspondraient aux caractéres physiologiques considérés. Dans le cas de la méthode de Ia
thése, la correspondance entre les SNPs, les noeuds intermédiaires et le caractére simulé est
définie par le modéle de culture, au lieu d'étre dérivée arbitrairement des données

d’entrainement comme dans le cas du réseau de neurones.

L'utilisation de méthodes combinant modele de culture et prédiction génomique nécessite
encore un développement plus poussé et une évaluation comparative pour atteindre son
potentiel en matiére de prédiction du phénotypes et d'idéotypage. Les questions a prendre
en compte pour améliorer les niveaux de précision de prédiction comprennent : i) le choix du

modele de culture ; ii) le choix des paramétres génotype-dépendants du modéle, iii) la
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précision de l'estimation de ces parametres, iv) les relations (ou similitudes) entre

I'environnement cible et I'environnement d'entrainement (Onogi, 2022).

Perspectives concernant la méthode de la theése.

Le travail prévu pour compléter les résultats de la these, comprend la modélisation de la
composante du rendement ‘poids du grain’ avec Sirius Maize, qui est déterminée pendant la
phase de remplissage chez le mais. Cela nous permettrait de simuler le rendement en grains
pour les mémes panels et scénarios environnementaux que pour l'indice foliaire et le nombre
de grains. Une autre amélioration du modeéle sera |'utilisation du parameétre PGRpase dans le
calcul du nombre de grains. Dans le présent travail, ce parameétre a été fixé pour tous les
génotypes, mais on s'attend a ce qu'il varie entre les génotypes de telle sorte que les hybrides
les plus sensibles au déficit hydrique pour le nombre de grains seraient ceux dont la croissance
foliaire est la plus sensible au déficit hydrique aussi (Welcker et al., 2011 ; Turc et al., 2016).
Cela pourrait améliorer la précision des simulations dans des conditions de déficit hydrique.
Enfin, I'ensemble des parametres dépendants du génotype fournis au modéle de culture et
leurs calculs seront optimisés aprés avoir pris en compte davantage d'expériences et de

génotypes (panel de diversité).

Vers une application dans des contextes de sélection ou de recommandation

variétale.

Dans les programmes de sélection du mais, la prédiction génomique est désormais
couramment utilisée en tant que composante intégrée (Cooper et al.,, 2014, 2021). La
combinaison de la prédiction génomique avec un modele de culture dans une méthode de
prédiction intégrée offre des possibilités intéressantes pour I'amélioration génétique de
caracteres complexes tels que le rendement en grains, pour des scénarios multiples ou
spécifiques définis comme des combinaisons d'environnements et de pratiques culturales. Le
co(t et les efforts nécessaires a I'établissement d'un modéle de culture approprié pour des
objectifs spécifiques d’un programme de sélection doivent étre mis en balance avec
I'importance des interactions génotype x environnement et d'autres sources de variation non

additives du caractere d’intérét ciblé (Cooper et al., 2016).
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En ce qui concerne la recommandation des variétés, les agriculteurs sont de plus en plus
nombreux a souhaiter avoir acces a des outils d'aide a la décision qui peuvent les aider a choisir
les variétés a cultiver conjointement aux itinéraires techniques. Cette demande augmente
surtout dans le contexte de conditions environnementales plus fluctuantes dues au
changement climatique, a la fréquence accrue des vagues de chaleur et de sécheresse, ainsi
gu'aux politiques agricoles favorisant la réduction des intrants. En complément des
informations produites pour les agriculteurs sur la base des réseaux d'essais pluriannuels
réalisés par les organismes de recherche appliquée (tels qu'ARVALIS), I'approche de
simulation de la thése peut représenter un outil supplémentaire précieux pour améliorer les
recommandations faites aux agriculteurs, principalement en testant in silico de multiples

combinaisons de variétés, de conditions environnementales et de pratiques culturales.
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