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ABSTRACT 

Progresses of high-throughput phenotyping, genomic prediction and modelling may jointly 

provide novel tools for breeding schemes and variety recommendation to farmers, in a 

context of climate change and water scarcity. Integration of these approaches requires new 

methods that tackle genotype x environment interactions and evaluate the comparative 

advantages of varieties in contrasting environmental scenarios. In this thesis, we developed 

and evaluated a new approach for predicting maize leaf area and grain number across multiple 

environments, which combined genomic prediction models, novel phenomics methods and a 

crop model (Sirius Maize). The latter can simulate, based on explicit physiological processes, 

yield and other traits for multiple genotypes in a large range of environmental conditions, 

provided that genotype-specific parameters are estimated for many hybrids and fed to the 

model. We tested our approach by using three panels of maize hybrids: a diversity panel, a 

panel that captures the genetic progress and a panel of recent hybrids, with 246, 56 and 86 

hybrids, respectively. Genotype-specific traits were measured in indoor or field experiments, 

related to plant phenology, architecture, leaf growth, responses to soil or air water status, and 

maximum grain number. We first showed that traits measured indoor can translate to the 

field, either directly or via the use of a model. Then, we showed that they can be successfully 

estimated, for a larger number of hybrids, via genomic prediction. Finally, we converted these 

traits into genotype-specific parameters, either via explicit equations or via scaling. 

Appreciable prediction accuracies were achieved by the crop model for leaf area index and 

grain number of studied hybrids, simulated in 9 and 21 experiments, respectively, with 

contrasting environmental conditions. In the thesis, we discuss the relevance of each of these 

steps, needed for integrating the knowledge from genetics, ecophysiological models and 

phenomics. We also identify areas to improve the approach and its prediction accuracy and 

for further applications in a plant breeding or variety recommendation context. 

Key words: crop model Sirius Maize, genomic prediction, phenomics, genotype by 

environment interaction, yield, leaf area index, climate change. 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



RÉSUMÉ 

Les progrès du phénotypage à haut débit, de la prédiction génomique et de la modélisation 

fournissent potentiellement aux sélectionneurs et aux chercheurs de nouvelles méthodes 

pour l’amélioration et pour l’évaluation variétale, dans un contexte de changement climatique 

et de réduction des intrants. L'intégration de ces données dans l’objectif d’une amélioration 

durable des rendements nécessite le développement de nouvelles méthodes qui considèrent 

les interactions génotype x environnement et évaluent les avantages comparatifs de 

nombreuses variétés dans des scénarios environnementaux contrastés. Dans cette thèse, 

nous avons développé et testé une nouvelle approche prédictive de l’indice foliaire et du 

nombre de grains dans des scénarios environnementaux variés. Cette approche combine des 

modèles de prédiction génomique, des méthodes phénomiques développées récemment et 

un modèle de culture (Sirius Maize). Celui-ci permet de simuler, à partir de processus 

physiologiques explicites, le rendement et d'autres caractères pour différents génotypes dans 

une large gamme environnementale, à condition que des paramètres spécifiques à chaque 

hybride soient estimés et fournis au modèle. Nous avons testé cette approche avec trois 

panels d'hybrides de maïs : un panel de diversité, un panel qui capture le progrès génétique 

et un panel d'hybrides récents, comprenant 246, 56 86 hybrides, respectivement. Les 

caractères génotype-dépendant utilisés pour la paramétrisation du modèle de culture ont été 

mesurés dans des expériences en plateforme de phénotypage sous serre ou au champ. Ils 

caractérisent la phénologie, l'architecture, la croissance foliaire, les réponses aux états 

hydriques du sol ou de l’air, et le nombre de grains maximal de chaque hybride. Nous avons 

d’abord montré que des caractères mesurés en plateforme de phénotypage sous serre 

permettent de prévoir les mêmes caractères au champ, soit directement soit via l’utilisation 

de modèles. Nous avons ensuite montré que ces caractères en plateforme peuvent être 

estimés, pour un plus grand nombre d’hybrides, au moyen de modèles de prédiction 

génomique. Enfin, nous avons estimé les paramètres génotype-dépendants du modèle à partir 

des caractères mesurés, soit au travers d’équations explicites soit par mise à l’échelle. La 

simulation de l’indice foliaire et du nombre de grains a été satisfaisante, dans 9 et 21 essais 

au champ, respectivement, en conditions environnementales contrastées. Dans la thèse, nous 

discutons de la validité de chacune de ces étapes, nécessaires à l'intégration des 

connaissances issues de la génétique, des modèles écophysiologiques et de la phénomique. 

Nous identifions également des pistes permettant d’améliorer l'approche et sa qualité 

prédictive, ainsi que des applications potentielles dans un contexte d’amélioration ou de 

recommandation variétale. 

Mots clés : modèle de culture Sirius Maïs, prédiction génomique, phénomique, interaction 

génotype-environnement, rendement, indice foliaire, changement climatique. 
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in their assumptions regarding markers effects and variance  distributions 
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General context 

World crop production over the last 70 years has increased at an unprecedented rate as a 

result of sustained yield increases, via breeding and crop management practices (Agnolucci & 

De Lipsis, 2020). However, recent contributions point at crop yield stagnating, while the 

demand for agricultural products is rising (Lobell & Gourdji, 2012; Grassini et al., 2013; Ray et 

al., 2015; Moore & Lobell, 2015; Schauberger et al., 2018). Changing agricultural policy 

(support to input reduction), natural annual variability of growing seasons and climate change 

are among the explanations cited for this stagnation or limited growth in yield (Peltonen-

Sainio et al., 2009; Brisson et al., 2010; Moore & Lobell, 2015). Indeed, with warming trends 

and limitations on irrigation and fertilization in several regions, crops are experiencing 

negative impacts of more frequent heat events, dry episodes, and an increase in evaporative 

demand (Tester & Langridge, 2010; Lobell et al., 2011; Challinor et al., 2014).  

Maize, a major food and feed crop worldwide (2nd largest harvested area, Erenstein et al., 

2022), is an example of an annual cereal that had a long-term yield high increase trend in 

farmers’ fields, but tending during last two decades to have a much lower yield growth rate 

and higher inter-annual variability (Moore & Lobell, 2015; Agnolucci & De Lipsis, 2020). In 

France for instance, the mean grain yield gain was 1.43 q/ha/year from 1951 to 1999 but only 

0.35 q/ha/year from early 2000s (Lorgeou et al., 2009, 2019; Fig. 1). In southern and eastern 

European countries such as Italy and Hungary, yields are stagnating (Ray et al., 2012).  

Fig. 1 : Maize mean grain yield in France farmers' fields from 1951 to 2018 
(Lorgeou et al., 2009, 2019). 



INTRODUCTION 

4 
 

Breeding played an important role in maize yield improvement. Starting from the 1930s, maize 

yield remarkably increased due to the breeding and adoption of hybrid varieties (Duvick, 2001; 

Fu et al., 2014). Maize breeding contributed to 50–60% of maize yield gains from 1934 to 2004, 

and the remaining 40–50% were attributed to appropriate field management (Duvick, 2005). 

The limited yield growth rate or stagnation in farmers’ fields during last years were observed 

despite of the continuous genetic progress in yield of 1.01 q/ha/year, estimated in European 

growing area with a panel of varieties released from 1950 to 2015 in Welcker et al. (2022). 

This indicates that the observed limitation or stagnation in annual yield growth in farmers’ 

fields is due more to environmental and crop management effects, along with genotype-by-

environment interaction effects that are important especially for quantitative complex traits 

such as grain yield (Bertin et al., 2010; Malosetti et al., 2013).  

The genotype-by-environment interaction (GEI) is the fact that the phenotypic response (e.g. 

yield trait) to environmental conditions varies for different genotypes beyond what is 

explained by genotypic and environmental effects, resulting for example in changes of 

genotypes ranking for the considered trait in different environments (Malosetti et al., 2013). 

The function describing the phenotypic performance of a genotype in relation to an 

environmental characterization is called the ‘reaction norm’ by some authors (Falconer & 

Mackay, 1996) or ‘response curves’ by others (Millet et al., 2019). Fig. 2A shows the case 

where there is no GEI, the genotype and the environment behave additively and the reaction 

norms are parallel. The remaining plots show different situations in which GEI occurs: 

divergence (Fig. 2B), convergence (Fig. 2C), and the most critical one, crossover interaction 

(Fig. 2D). Crossover interactions are the most important for breeders as they imply that the 

choice of the best genotype is determined by the environment.  

 Fig. 2 : Genotype-by-environment interaction in terms of changing mean performances across 
environments: (A) additive model, (B) divergence, (C) convergence, (D) cross-over interaction 
(Malosetti et al. 2013). 
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GEI can also be regarded in terms of heterogeneity of genetic variance and covariance. As a 

consequence of GEI, the magnitude of the genetic variance as observed within individual 

environments will change from one environment to the other, becoming usually lower as 

stress conditions increase (Malosetti et al., 2013).  

Depending on environmental conditions and management practices, environment and GEI 

effects can prevent varieties from reaching their expected genetic values, and consequently 

limit yield. The incidence of GEIs and a lack of their understanding results in a reduction in the 

predictability of trait phenotypes and the realized rates of genetic gain achieved from 

selection (Cooper et al., 2016). Breeders and other variety testing actors evaluate each year 

candidate varieties in multi-environment trials (METs). Most varieties are evaluated in a 

limited number of environments, considered as a combination of year × site × condition 

(Robert et al., 2020). Consequently, the environments in which the varieties are evaluated can 

be different from the target environments, because of the significant variation between years 

(Casadebaig et al., 2016). In addition, only a limited number of varieties are evaluated each 

year to control the phenotyping costs (Robert et al., 2020). All these constraints are reducing 

the chance of success as they limit the number of genotypes that can be evaluated in the 

target environments. Three main tools can help to raise these strong constraints: genomic 

prediction (GP) models, phenomics and high-throughput phenotyping (HTP), and crop growth 

models (CGMs). 

Genomic prediction models 

With the availability of low-cost genotyping, genomic prediction has become an attractive tool 

to increase the number of genotypes considered for selection and to speed up the breeding 

cycle (Hickey et al., 2014; Crossa et al., 2014; Cooper et al., 2014; Araus et al., 2018). Genomic 

prediction (GP) consists in predicting quantitative complex traits of candidate varieties by 

using all available DNA markers across the genome, usually single nucleotide polymorphism 

markers (SNPs) (Meuwissen, 2007). In GP, a phenotyped and genotyped calibration (training) 

set is used to estimate DNA markers additive and non-additive effects. Once the model is 

calibrated, new candidate varieties can be predicted, as long as their genomic information is 

available. Several statistical models or machine learning methods have been proposed for 

genomic prediction using genome-wide SNP markers, including : linear mixed (RR-BLUP, G-
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BLUP; Whittaker et al., 2000; VanRaden, 2008; Endelman, 2011; Wang et al., 2018) and 

Bayesian (LASSO, BayesA, BayesB, BayesC, BayesR; Meuwissen et al., 2001; Wang et al., 2015; 

Shi et al., 2021; Montesinos López et al., 2022) regression models, gaussian kernel models 

(Gianola & van Kaam, 2008; Cuevas et al., 2016), random forest and deep learning methods 

(Montesinos-López et al., 2018; Crossa et al., 2019; Måløy et al., 2021; Wang et al., 2023). 

These GP models mainly differ in their assumptions regarding markers effects and variance 

distributions, regarding linearity or nonlinearity of markers effects and their computational 

complexity. All result in different prediction accuracies depending on trait genetic architecture 

and heritability, training population size and composition and DNA markers density (Tayeh et 

al., 2015; Kaler et al., 2022). 

Specific GP models were proposed to predict the performance of varieties in different 

environments, taking the genotype by environment interaction (GEI) into account. Fig. 3 

presents a short timeline of the type of statistical and machine learning methods used in GP 

research in the context of G x E (Crossa et al., 2022).  

 

 

 

 

 

Fig. 3 : History of the main research involving genomic prediction and G x E interaction as reviewed by 
Crossa et al. (2022). Blue boxes denote studies using only DNA markers or genomic information. Green 
boxes refer to models in which DNA markers are complemented by stress indices derived from a crop 
growth model. Purple boxes refer to models in which DNA markers are complemented by the use of 
environmental covariates (EC), such as micro-climatical variables and soil information. 
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It was first proposed to adapt the reference GP models to the GEI context by attributing 

environment specific effects to the markers (Schulz-Streeck et al., 2013; Crossa et al., 2016), 

or by modeling genetic covariances between environments (Burgueño et al., 2012). In other 

studies, environmental covariates (EC) were introduced in the GS model (Jarquín et al., 2014; 

Ly et al., 2018; Millet et al., 2019), which allows predicting the performance of varieties in new 

environments. Crop growth models (CGM) were sometimes used to adjust the EC estimates 

to phenological stages, or to derive EC estimating the stress experienced by the plants (Ly et 

al., 2017; Rincent et al., 2019), instead of directly using pedoclimatic data. Finally, deep 

learning artificial neural networks (DL) are also being developed for assessing multi-trait, 

multi-environment genomic prediction (Montesinos-López et al., 2018; Cuevas et al., 2019; 

Costa-Neto et al., 2021). Overall, GP statistical models integrating environmental covariates 

or deep-learning models performed the best, with prediction accuracies for yield ranging from 

0.50 to 0.85 depending on validation schemes and environment types considered. 

Phenomics and high-throughput phenotyping  

Since whole-genome sequencing of many crops has been achieved, genomics and breeding 

studies have stepped into the big-data and high-throughput era (Li et al., 2021). Hence, 

acquisition of large-scale phenotypic data (phenomics) became one of the major bottlenecks 

hindering crop breeding (Houle et al., 2010; Li et al., 2021). Phenotyping applies specific 

methods and protocols to measure morphological structural traits, physiological functional 

traits, and component content traits at different spatial scales (cells, tissues, organs, plants, 

canopy, populations) and at appropriate temporal scales, ranging from minutes to months 

(Table 1, Fig. 4).  

 Table 1 : Methods for phenotyping at different scales of plant organization (Tardieu et al., 2017). 
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Since early 2010s, a variety of high-throughput plant phenotyping platforms (HT3Ps) have 

been developed which are now common tools in commercial or research teams (Granier & 

Vile, 2014; Tardieu et al., 2017; Yang et al., 2020). Li et al. (2021) defines a ‘HT3P’ as a platform 

that can collect massive amounts of phenotypic data from hundreds of plants every day with 

a high degree of automation. HT3P is hence a powerful tool allowing us to monitor and 

quantify crop growth and production-related phenotypic traits in a non-destructive, fast, and 

high-throughput manner. The acquired phenomic data can then be valued in genomics-

assisted breeding approaches (Rutkoski et al., 2016; Araus et al., 2018; Alahmad et al., 2018; 

Lopez-Cruz et al., 2020; Guo et al., 2020; Sandhu et al., 2022), along with crop modelling 

approaches when the measured traits can be linked to crop growth models formalisms 

Fig. 4 : Phenotyping sensors currently available to monitor, quantify, and estimate key 
morphological structural traits, physiological functional traits and component content traits of 
plants (Li et al., 2021). 
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parameters (Araus et al., 2018; Messina et al., 2018; Bustos-Korts et al., 2019; Toda et al., 

2020; Lacube et al., 2020).  

Various types of indoor and field HT3Ps have been developed (Fig. 5). All phenotyping 

platforms integrate cameras, supplemental light sources, automatic watering, and weighing 

devices to automatically collect plant phenotypic data (Li et al., 2021). Available cameras 

include those capable of capturing RGB, infrared (IR), fluorescence (FLUO), near-infrared (NIR), 

multispectral or hyperspectral images (Fig. 4). Indoor high-throughput phenotyping (in a 

growth chamber or greenhouse) entails the precise control of environmental factors and an 

accurate capture of the plant responses to specific environment conditions. Given the 

mechanical structure of the platform and movement mode between the sensors and plants, 

an indoor HT3P can be categorized as either a benchtop-type or a conveyor-type (Fig. 5).  

 

 

Fig. 5 : Examples of high-throughput plant phenotyping platforms (HT3Ps) as reviewed by Li 
et al., (2021), including HT3Ps in the greenhouse/growth chamber, field ground-based HT3Ps 
and aerial HT3Ps. 
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Partial environmental control in indoor platforms limits the unpredictable phenotypic 

variation caused by the interaction between genotype and natural environment (G×E). 

Therefore, indoor HT3Ps are widely used to study the response of plants to specific growth 

conditions, and accurately capture morphological structural, physiological functional or 

component content traits (Li et al., 2021). Field platforms account only for 18% of HT3Ps 

worldwide (Yang et al., 2020). They operate at canopy level and are affected by weather, biotic 

and abiotic stresses, and soil properties, as in farmers’ fields. According to their usage 

scenarios and imaging distance, field HT3Ps can be categorized into ground-based and aerial 

platforms. Ground-based platforms can be further classified as pole/tower based, mobile, 

gantry-based, and cable-suspended (Fig. 5). Likewise, aerial platforms can be categorized, as 

unmanned aerial platforms (UAPs), manned aerial platforms (MAPs) and satellite platforms 

(Fig. 5). 

Each year, the thousands of phenotyping experiments worldwide in environmentally 

controlled growth facilities or in the field produce large amounts of phenotypic data (Yang et 

al., 2020). However, the reproducibility of results by different research groups is not always 

satisfactory because of the unexplained variation of environments (Poorter et al., 2012, 2016). 

Thus, environmental factors are vital and should receive at least the same amount of attention 

as the traits that are measured (Tardieu et al., 2017; Yang et al., 2020). Envirotyping, defined 

as characterizing and quantifying the environmental factors in a high-throughput way, can 

help to address this issue (Xu, 2016). Integrated with optimized experimental field trials 

designs, envirotyping, crop modelling and genomics, high-throughput phenotyping can 

improve the heritability and potential for genetic gain (Araus et al., 2018). 

Crop growth models (CGMs) 

Crop growth models consist of multiple equations that represent physiological processes of 

plants and simulate crop development and growth dynamically, given environmental (e.g., air 

temperature, light and soil water) and management (e.g., sowing date, plant density and 

fertilizer applications) inputs (Muller & Martre, 2019; Onogi, 2022). CGMs are calibrated using 

data from controlled environments and field trials, most often by using model inversion. They 

often use parameters calibrated for each module/process independently using a variety of 

datasets (Onogi, 2022). Once calibrated, CGMs can predict yield for new (untested) 



INTRODUCTION 

11 
 

environments if conditions at these environments are given. When CGMs are calibrated for 

each genotype, estimates of CGM parameters can differ between genotypes. Differences in 

parameters are considered as representing the differences in response to environmental 

conditions among genotypes. However, calibrating the behaviour of genotypes is most often 

limited to the duration of phenological phases because other parameters are highly 

interacting, thereby making model inversion nearly impossible. The interconnections and 

feedback regulations between the CGMs subcomponents and biological processes, generate 

unexpected global system properties, called emergent properties, which do not appear when 

the subcomponents are individually considered (Bertin et al., 2010). GxE interactions and 

some types of non-additive effects on the expressed phenotype are part of these emergent 

properties in CGMs.  

CGMs include, for instance, DSSAT (Decision Support System for Agrotechnology Transfer; 

Jones et al., 1998) and APSIM (Agricultural Production Systems sIMulator; McCown et al., 

1996; Hammer et al., 2010; Fig. 6), that model canopy-level processes. Both CGMs use a 

graphical user interface (GUI) and cover a wide range of crops.  

 

 

Components of such process-based CGMs are : state variables (X) representing current plant 

status (e.g., leaf area index, biomass, and developmental stages), rate variables (R) 

representing rates of change in the state variables, environmental variables (E) representing 

environmental inputs (e.g., air temperature and light), and parameters characterizing 

Fig. 6 : Schematic representation of crop growth and development processes interconnection in 
APSIM (Agricultural Production Systems sIMulator) cereal template (Hammer et al., 2010).   
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functional relationships among the variables (X, R and E) (Horie et al., 1992). State variables X 

then relate to each other, and feedback loops exist among variables. Consequently, process-

based CGMs comprise many parameters to be determined. Genotype-dependant parameters 

of CGMs have various alias, including genetic coefficients, input traits, physiological traits, 

genotype-specific parameters, and genotypic parameters (Onogi, 2022). A shortcoming of 

CGMs in a breeding context, is that all necessary input traits have to be measured for all 

genotypes to be simulated with the CGM. This may prove to be very costly and complex in 

practice, when done on an industrial scale (i.e., for many populations and repeated yearly). 

Integration of CGMs and genomic prediction (GP) models 

Models used to enable genomic prediction are founded on quantitative genetics theory and 

are statistical representations of a complex biological system (Cooper et al., 2016). Hence, 

these models do not explicitly take into consideration much of the biology that contributes to 

GEIs (Hammer et al., 2006). The methodology for GP relies heavily on the creation of suitable 

training data sets that span the highly combinatorial inference space (genetic combinations in 

the environments) for the intended applications (Cooper et al., 2016). Fitting the models to 

the marginal effects across the environments of the training data set to predict marginal 

performance in the application set is the most common approach; however, the presence of 

important GEIs in the application set can be challenging. Extensions of GP models discussed 

before, that rely on the identification of suitable environmental covariates have been 

developed with success. However, these methods do not explicitly take into consideration the 

dynamic nature of the biology underlying GEIs.  

Recently, Technow et al. (2015) proposed a novel methodology, named CGM-WGP, that 

outperformed the benchmarked classical GP model (G-BLUP). It was assumed to take into 

consideration the biology underpinning GEIs through CGM, while avoiding large-scale 

phenotyping costs by using GP. The CGM-WGP method consisted in combining a simple maize 

CGM developed by Muchow et al. (1990), with a GP Bayesian model for genotype-dependant 

CGM parameters estimation. The model predicted grain yield as a function of plant density, 

temperature and solar radiation, as well as four genotype-dependent physiological traits 

(parameters) : total leaf number, area of largest leaf, radiation use efficiency and thermal units 

to physiological maturity. The tests were performed for a population of inbred lines created 
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in silico. CGM parameters for new (untested) genotypes were first predicted with GP, then 

their phenotypes (yield values) in tested or new environments were simulated by running the 

CGM with the predicted parameters values along with environmental and management 

inputs. Predictions accuracies obtained with the CGM-WGP method ranged from 0.42 to 0.77 

depending on tested prediction schemes, while accuracies ranged from 0.08 to 0.62 with the 

benchmarked G-BLUP model in the study. The method integrating GP model predictions in a 

CGM can be generally referred to as GP-assisted CGM (Onogi, 2022; Fig. 7a). Indeed, 

phenotypes are predicted here by the CGM, and GP aids these predictions. This approach is 

an extension of gene-based models and QTL mapping on CGM parameters (Hoogenboom et 

al., 2004; Onogi, 2022). Other early applications of GP-assisted CGM to real data included : 

Onogi et al. (2016) for predicting rice heading dates, Cooper et al. (2016) and Messina et al. 

(2018) for predicting maize grain yield, Toda et al. (2020) for predicting rice biomass. Finally, 

a similar GP-assisted CGM method is developed in our thesis study for maize. 

 

 

 

 

Alternatively, CGMs can be used to assist GP models in multiple ways. Such integration can be 

termed CGM-assisted GP (Onogi, 2022; Fig. 7b). Mainly three approaches have been proposed 

for that. (i) The first is the use of CGMs to simulate plant growth stages, which are then used 

for inferring environmental covariates that can affect GxE interactions (Heslot et al., 2014; de 

los Campos et al., 2020). (ii) The second approach is the use of CGMs to characterize 

environments (Ly et al., 2017). In the latter study, a CGM model (APSIM) was run to compute 

Fig. 7 : Genomic prediction-assisted crop growth models (GP-assisted CGMs) and the crop growth 
model assisted genomic prediction (CGM-assisted GP). In GP-assisted CGMs (a), GP is used to predict 
parameters of CGM for new genotypes. Phenotypes are then predicted with the CGM. In CGM-assisted 
GP (b), phenotypes of new genotypes are predicted with GP. CGMs are used to support development 
of GP models (Onogi, 2022).  
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indices of nitrogen nutrition stress for wheat, which were then used to characterize multiple 

experiments environments. GP was finally conducted by considering the genotype-by-index 

interactions. (iii) The third approach is the use of CGMs to predict intermediate or indicator 

traits. In Robert et al. (2020), wheat heading dates for new environments were predicted using 

a CGM, then predicted heading dates were included as covariates in GP mixed models to 

predict yield. In Bustos-Korts et al. (2019), dynamics of biomass and canopy cover for wheat 

genotypes were simulated using APSIM model, then parametric traits were extracted from 

these dynamics and used in a multi-trait GP model for predicting grain yield. Similarly, in Jighly 

et al. (2023), a CGM was used to simulate phenology, nitrogen and biomass traits, then these 

traits were used in a GP model to predict some field performance traits including (yield, grain 

number and grain protein content). 

Elements on maize cropping cycle and growing conditions 

Maize (Zea Mays L.) is a monoecious species of the Poaceae family and an annual summer 

crop in temperate regions. It is usually sown between March and May in Europe, and maize 

grain is harvested from September to November, depending on varieties maturity groups 

(duration from sowing to grain complete physiological maturity). Maize is not evenly 

distributed across Europe. It is concentrated in regions with favourable climate and 

predominantly grown in rainfed conditions (Webber et al., 2018). When environmental 

conditions become suboptimal or even dry, as in southern Europe, and when water is available 

and economical strategies permit it, maize is grown under irrigated conditions. For instance, 

irrigated maize covered approximately one third of the irrigated cropping area in France in 

2022 (Agreste, statistiques agricoles).  

The maize cycle is commonly characterized by three main phases, namely (i) the vegetative 

phase, (ii) the flowering time phase during which reproductive organs rapidly grow and (iii) 

the grain filling during which the ear grows until maturity (Zhao et al., 2012). The vegetative 

growth stages extend from sowing to the appearance of tassel (male inflorescence) at the top 

of the plant (Fig. 8). They include a strictly vegetative period, from sowing to tassel initiation, 

and a period, from tassel initiation to tasselling (visible tassel), during which vegetative and 

reproductive growths overlap. The leaves are successively initiated at the shoot apical 

meristem until the apex becomes reproductive and initiates the tassel. At that stage, 



INTRODUCTION 

15 
 

approximately 50 % of the leaves are visible, while the remaining younger leaves are still 

enclosed in the sheath of the developed older leaves. The female flowering structure, the ear, 

is usually initiated in axillary buds, 1 to 2 phyllochrons after the tassel. Female flowers are 

sequentially initiated as floret rings (or cohorts) around a central cob. Successive florets are 

aligned along rows, the number of which corresponds to the number of florets synchronously 

initiated in the same ring. Flowers are therefore ranked from ear base to ear apex according 

to their order of initiation. Each flower includes an ovary with an attached silk (elongated style) 

and potentially produces one grain if fertilised successfully. The number of fertilisable ovules 

per ear, i.e. the potential number of grains at pollination, is therefore the product of the 

number of rows by the number of flowers per row. 

 

 

 

 

 

 

 

Fig. 8 : Different standard growth stages of a maize crop, including vegetative (V) and reproductive 
(R) stages. The V developmental milestones include : emergence (VE), in which the coleoptile reaches 
the soil surface and elongates due to its exposure to sunlight; V1, in which the lowermost leaf has a 
visible leaf collar; V3, in which the plant has three leaf collars, whose growth purely relies on 
photosynthesis; V7, in which the plant has seven leaf collars and experiences rapid growth; V10, in 
which the plant equipped with 10 leaf collars has a rapidly-growing stalk and VT, in which the last 
branch of the tassel is visible. The R developmental milestones include : R1, in which any silk is visible 
outside the husk; R2, in which kernels are white and resemble a blister in shape; R3, in which kernels 
are yellow on the outside with a milky white inner fluid; R4, in which starch is dough-like consistency; 
R5, in which kernels are dented and R6, in which all kernels on the ear have reached maximum dry 
weight with physiological maturity (Zhao et al. 2012). 
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Although, strictly speaking, the reproductive stages begin at floral transition, reproductive 

growth stages are most often considered as beginning with the emergence of the immature 

tassel about one week before anthesis and female flowering, defined by silk emergence out 

of the husks (bracts) that enclose the ear (Fig. 8). The rate of silk elongation inside the husks 

is crucial to ensure male and female synchronous flowering. Pollen is shed for several days 

from the main axis of the tassel to the base of the lower branches. It is captured by the silk 

trichomes, small hair-like outgrowths along the silks. Pollen tubes grow through the silk to 

enter the ovary. During a first period of 8-10 days after fertilisation (lag-phase) tissue 

differentiation and cell divisions occur in the embryo and endosperm, without noticeable 

biomass increase. Grain abortion may occur during this period, and the yield component grain 

number is therefore determined at the end of it (Borrás & Westgate, 2006). It is followed by 

the period, called grain filling phase, during which starch and proteins are deposited into the 

reserve tissues of the grain. This period is characterised by a rate and duration of grain filling, 

which determine the yield component ‘individual grain weight’. The physiological maturity, 

i.e. the date when the grain has reached it maximum dry weight, occurs around eight weeks 

(50 to 60 days) after pollination. Grains continue to dry until the harvest. 

Conditions around flowering time affect the final number of grains by impacting pollination 

(anthesis, pollen viability), fertilization (silk growth, silk receptivity) and/or ovary/embryo 

development (ovary or seed abortion) (Oury et al., 2016; Turc & Tardieu, 2018). Individual 

grain weight depends on conditions during grain filling. Grain weight has usually a lower 

impact on grain yield that grain number. Hence, maize has a critical period around flowering 

time, during which it is subjected to abortion due to drought and heat, expected to worsen 

with climate change (O’Keeffe, 2009). 

Overview and outline of the thesis 

The general objective of this thesis is to develop and evaluate a method for predicting yield of 

a large number of maize varieties across multiple environment, by using the knowledge 

accumulated for the response of major traits to environmental conditions. To achieve this 

goal, we combined statistical genomic prediction models, novel phenomic approaches and a 

crop growth model ‘Sirius Maize’ (Fig. 9).  
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This method may result in a new high-throughput tool for simulating performance of hundreds 

of maize genotypes in hundreds of environments, in the context of either breeding for new 

varieties or evaluating them for recommendation to farmers. Indeed, this thesis was carried 

out in partnership with ARVALIS, an applied research organisation for farmers in France, 

specialised in crops including small grain cereals and maize. Its main mission is to propose 

effective agronomic solutions in the multiplicity of scenarios. Its includes variety choice and 

management, along with economic, environmental and sanitary solutions, that are then 

communicated to farmers, to help them to adapt and face current challenges such as climate 

change, societal demands and commercial requirements.  

The first step in our study is developed in Chapter 1 and published as a research paper in 

‘Nature Communications’, entitled : ‘Robotized indoor phenotyping allows genomic prediction 

of adaptive traits in the field’. Its objective was to analyse traits measured in indoor high-

throughput phenotyping platform experiments, which are related to maize development and 

growth in the field. Three panels of maize hybrids were analysed here (Fig. 10): a ‘diversity 

panel’ with 246 hybrids (Millet et al., 2019), a ‘genetic progress panel’ with a historical series 

of 56 commercial hybrids (Welcker et al., 2022) and a ‘recent hybrids panel’ including 86 

Fig. 9 : Schematic representation of thesis approach combining phenomics, genomic prediction 
and crop modelling.  
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hybrids marketed from 2008 to 2020 (with most indoor measurements made on 20 

contrasting hybrids only, for the latter panel). We showed that genotypic values of traits 

measured indoor closely correlated with those in the field, either directly or via modelling. We 

then examined to what extent measurements in indoor platform can serve to train statistical 

prediction models that estimate genotypic values of traits based on genomic information only. 

 

 

 

Chapter 2 is entitled : ‘Acquisition and analysis of extended field data in contrasting 

environmental conditions for crop model simulation on a set of recent hybrids’. Its objective 

was to analyse the dataset collected in a multi-site field experiment for the recent hybrids 

panel. Indeed, we included here the field data collected in the European project INVITE 

(https://www.h2020-invite.eu/) on a subset of 30 varieties from the recent hybrids panel. It 

consisted of 33 experiments, defined as combinations of site x year x watering regime, 

distributed on a west–east transect for temperature and evaporative demand across Europe 

in both rainfed and irrigated conditions. We characterized the environmental conditions 

experienced by plants in each field based on weather and soil water sensors. We estimated 

environmental indices and scenarios for all experiments. We also calculated a trait that is an 

Fig. 10 : Diagram of the three studied panels composition (a), and distribution of their field 
trials networks (b, c & d). 

https://www.h2020-invite.eu/
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essential genotype-dependent parameter of Sirius Maize model, namely the maximum grain 

number potential per plant. We also analysed leaf area index in contrasting experiments, 

which was estimated via drone imaging and inversion of the radiative transfer model 

‘PROSAIL’ (Berger et al., 2018; Blancon et al., 2019). Finally, we estimated genotypic 

sensitivities of grain number to mean soil water potential and mean daily maximum 

temperatures during the flowering phase using a linear regression model. 

Chapter 3 is entitled : ‘Simulating leaf area index and grain number for panels of maize hybrids 

in contrasting environmental conditions’. Here, we tested the consistency of our approach, 

which aimed at simulating the performance of hundreds of genotypes in hundreds of 

environments via combining phenomics, genomic prediction and crop modelling. The 

specificity of this chapter was to perform simulations based on a crop model whose genotype-

dependent parameters originate from traits presented in previous chapters. However, due to 

time constraints, our study was limited to the first part of maize crop cycle, with running 

simulations for leaf area index and grain number for tens of varieties in contrasting 

environmental conditions. We used for that the process-based crop model ‘Sirius Maize’.  
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Robotized indoor phenotyping allows
genomic prediction of adaptive traits in
the field

Jugurta Bouidghaghen 1,2, Laurence Moreau3, Katia Beauchêne4,
Romain Chapuis5, Nathalie Mangel6, Llorenç Cabrera‐Bosquet1,
Claude Welcker 1, Matthieu Bogard 2 & François Tardieu 1

Breeding for resilience to climate change requires considering adaptive traits
such as plant architecture, stomatal conductance and growth, beyond the
current selection for yield. Robotized indoor phenotyping allows measuring
such traits at high throughput for speed breeding, but is often considered as
non-relevant for field conditions. Here, we show that maize adaptive traits can
be inferred in different fields, based on genotypic values obtained indoor and
on environmental conditions in each considered field. The modelling of
environmental effects allows translation from indoor to fields, but also from
one field to another field. Furthermore, genotypic values of considered traits
match between indoor and field conditions. Genomic prediction results in
adequate ranking of genotypes for the tested traits, although with lesser
precision for elite varieties presenting reduced phenotypic variability. Hence,
it distinguishes genotypes with high or low values for adaptive traits, con-
ferring either spender or conservative strategies for water use under future
climates.

Breeding for the improvement of crop resilience is increasingly
necessary for the sustainability of cropping systems and for food
security in the context of climate change and growing population1,2.
Most current breeding schemes are based on yield measurement of
thousands of genotypes grown under diverse environmental sce-
narios, assisted by genomic selection that allows yield prediction
for many thousands of untested genotypes based on their genomic
information3,4. In this approach, the measurement of other traits is
most often limited to crop cycle duration, which defines the grow-
ing areas in which resulting genotypes can be grown, and to traits
that may jeopardize the commercialization of selected candidates,
such as resistance to diseases or quality performance (e.g. oil con-
tent or protein content in rape seed and wheat, respectively)5.
However, in the context of climate change, other traits that affect

light interception, plant development, transpiration and growth are
important for predicting, via statistical or crop models, the suit-
ability of genotypes to future environmental conditions6–8. Fur-
thermore, a recent analysis of maize genetic progress suggests that
physiological traits involved in plant response to heat and drought,
such as leaf growth rate or stomatal conductance, have not been
improved over the last 60 years of maize selection9. Yield was
improved via other traits such as the fine-tuning of phenology and
the constitutive increase of grain number, but physiological adap-
tive traits are still a potential reservoir of interesting alleles for cli-
mate change9.

The progress of high-throughput phenotyping now allows one
to measure physiological traits for hundreds of genotypes. Robot-
ized indoor phenotyping platforms allow estimation, with typical
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time definitions of some minutes to one day, of traits that underlie
the genetic variability of leaf area and their responses to environ-
mental conditions, e.g. leaf expansion rate, leaf width, phyllochron
and leaf number10–13. They also allow estimation of traits controlling
transpiration, e.g. stomatal conductance14 and those controlling
plant architecture, e.g. the vertical distribution of leaf area and the
azimuthal distribution of leaves along the stem, with good
heritability15. Then, light interception, transpiration, and radiation
use efficiency can be simulated in virtual field canopies, which
reproduce 3D plants characterized in the indoor platform15–17. Field
phenotyping also allows measuring leaf area at several dates, for
hundreds of genotypes in different fields characterized by mea-
sured environmental conditions18–20. This can result in the estima-
tion of intercepted light in the same fields and, via model inversion,
of leaf area and plant architecture21–23.

However, the use in breeding of these physiological and growth-
related traits faces the difficulty of their high sensitivity to environ-
mental conditions, resulting in large genotype x environment
interactions24–27. This difficulty is not limited to the extrapolation of
trait values from indoor to field conditions: most of these traits also
largely vary between fields depending on environmental conditions,
making difficult the prediction of traits in one field from those mea-
sured in another field24,28,29. The relationship between these traits and
yield is also highly depending on environmental scenarios30,31. Conse-
quently, physiological adaptive traits have not been considered per se
in breeding programs9,32.

The recent development of speed breeding in controlled con-
ditions may offer new opportunities for selection strategies invol-
ving plant traits. Speed breeding reduces the duration of each
generation by setting environmental conditions favouring rapid

development, thereby allowing up to eight generations of selection
per year33,34. Yield and agronomic traits like disease resistance are
predicted based on genomic information at each generation, while a
full phenotyping of the most promising genotypes is carried out in
the field after some generations35. However, this approach also
potentially includes, in breeding schemes, other traits measured
indoor for training a prediction model used in genomic selection,
and phenotyped for selected candidates after a few generations. For
instance, in wheat, Watson et al.36 performed speed breeding
involving the length of flag leaves and ear length, in addition to
yield. Conditions for the use of speed breeding in our case are that
physiological adaptive traits translate from indoor conditions to the
field, and are accurate enough to make it feasible to implement
rapid cycling based on indoor phenotyping and genomic predic-
tion. Three panels of maize hybrids were used to test these condi-
tions (Table 1, Supplementary Table 1): a ‘diversity panel’ with 246
hybrids31, a ‘genetic progress panel’ with a historical series of 56
commercial hybrids9 and a ‘recent hybrids panel’ with 86 commer-
cial hybrids marketed from 2008 to 2020 (most indoor measure-
ments on 20 contrasting hybrids, Supplementary Data 1 and
Supplementary Table 2).

In this work, we first show thatgenotypic values of traits measured
indoor closely correlate with those in the field, either directly or via
modeling (Table 2). We then show that, although absolute trait values
differ if measured indoor or in the field, they still follow common
trends in response to environmental conditions, and can be inferred by
using an ecophysiological model. Finally, we examine to what extent
measurements in indoor platforms can serve to train statistical pre-
diction models that estimate genotypic values of traits based on
genomic information only (Table 2).

Table 1 | Summary of variance components and genomic heritability of considered traits

Trait Unit Panel #
Hyb

#
Rep

Mean value hg2 σg
2 σa

2 σd
2 σe

2

Leaf appearance rate (LAR) Leaf/ day20°C Diversity panel 246 11 0.251 0.63 1.4E-04 1.1E-04 3.4E-05 8.1E-05

Genetic pro-
gress panel

56 7 0.265 0.63 1.7E-04 9.2E-05 7.4E-05 9.9E-05

Recent hybrids panel 50 3 0.262 0.56 4.8E-05 2.5E-05 2.3E-05 3.7E-05

Vegetative phase duration Days20 °C Diversity panel 246 12 68.22 0.82 4.25 3.66 0.59 0.95

Genetic pro-
gress panel

56 7 63.34 0.71 7.39 5.20 2.19 3.05

Recent hybrids panel 60 9 65.02 0.68 2.11 1.24 0.86 0.99

rhPAD (relative height at 50% of
leaf area)

Unitless Diversity panel 246 11 0.308 0.74 7.8E-04 6.3E-04 1.4E-04 2.7E-04

Genetic pro-
gress panel

56 7 0.279 0.69 1.5E-03 9.9E-04 4.9E-04 6.8E-04

Recent hybrids panel 20 3 0.360 0.54 1.1E-03 5.3E-04 5.2E-04 9.1E-04

Stomatal conductance (gsmax) mmol/m2/s Diversity panel 246 11 108.4 0.48 57.2 38.4 18.8 61.2

Genetic pro-
gress panel

56 7 119.8 0.53 61.77 31.35 30.42 54.02

Recent hybrids panel – – – – – – – –

Leaf expansion rate (LER) cm2/day20 °C Diversity panel 246 11 134.6 0.61 107.6 76.2 31.3 69.0

Genetic pro-
gress panel

56 7 163.9 0.62 343.8 215.0 128.8 211.5

Recent hybrids panel 20 3 146.9 0.54 221.6 110.0 111.5 185.5

Leaf area index (LAI) Unitless Diversity panel – – – – – – – –

Genetic pro-
gress panel

56 7 3.65 0.66 0.23 0.15 0.08 0.13

Recent hybrids panel – – – – – – – –

#Hyb, number of hybrids; for the recent hybridspanel, it is defined by the number of hybrids in the considered fields or in the indoor experiment. #Rep, number of independent values calculated for
the considered trait. hg

2, genomic heritability (narrow-sense, see Methods), σg
2, total genetic variance. σa

2 and σd
2, variances explained by additive and dominance relationship matrices72,

respectively. σe
2, residual variance. For estimations per experiment, see Supplementary Table 3.
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Results
Traits measured indoor correlated with those in the field,
depending on categories of traits
A genetic approach based on indoor trait measurements requires that
the latter aregenetically correlated to measurements of the same traits
in the field. However, such comparison is not always possible, because
robotized indoor phenotyping can measure traits that would be
impossible, or very tedious, to measure in the field, such as stomatal
conductance or the 3D leaf distribution on the plant stem. Conversely,
some traits measured indoor are largely irrelevant to the field, in
particular those performed on whole canopies. Hence, comparisons of
the genetic variability of trait values obtained indoor and in the field
face different levels of difficulty depending on traits. We focused our
study on traits that are heritable and have a direct impact on biomass
accumulation (Table 1 and Supplementary Table 3). They present
contrasting ‘phenotypic distances’37 between indoor and field mea-
surements, thereby causing different degrees of complexity.

Leaf appearance rate (LAR) represents the simplest case, as it is
measured with the same protocol indoor and in the field. Its genomic
heritability was 0.63 in the diversity and genetic progress panels
(Table 1). In the ‘recent hybrid panel’ (Fig. 1 and Supplementary
Tables 2 and 4), correlations between genotypic values indoor and in
the field (Fig. 1a and Table 2) were measured either via correlations
between BLUEs estimated values or via genetic correlations assessed
with a multivariate mixed model38,39. As expected40, genetic correla-
tions were lower than correlations between BLUEs, but were still

significant (p-value < 0.02). In both cases (Table 2), they were slightly
higher than those between one field and another field (Fig. 1b; r = 0.57,
n = 21, p-value = 0.007 and r = 0.49, n= 26, p-value = 0.011, respec-
tively, for correlations between BLUEs). The latter are considered here
as a benchmark for evaluating the quality of translation from indoor to
field experiments. Importantly, the ranking of hybrids and their dis-
tribution in highest and lowest quartiles were essentially conserved
between indoor and field conditions, a necessary condition for
breeding (Supplementary Table 4). Furthermore, these correlations
and rankings were similar to those between fields for the duration of
the vegetative phase, a trait that is commonly measured in breeding
programmes (Fig. 2a, b).

Plant architecture is a more difficult case because its measure-
ment relies on different principles in indoor vs field experiments
(Fig. 3, Table 2, and Supplementary Tables 2 and 4). The architectural
trait considered indoor (rhPAD) was derived from 3D reconstructions of
individual plants, via the difference in altitude between the top of the
plant and the point where half of leaf area is reached, normalized by
plant height15. This trait is closely related to light interception by a
canopy15 and had high heritability (Table 1). It cannot be measured in
the field, where 3D reconstruction of individual plants cannot be

Fig. 1 | Leaf appearance rate (LAR) translated from platform to field, and could
be inferred via genomic prediction. a Correlations between genotypic values
measured indoor and in a field. b Correlations between one field and another field
were similar to those between indoor and a field. c Comparison of observed mean
genotypic values and mean predicted values (G-BLUPs) in a 5-fold cross-validation
scheme with 10 iterations. d Comparison of observed mean genotypic values and
predicted values in the independent dataset, with observed values originating from
data of a, b (BLUEs) and G-BLUP model calibration made using dataset of c. In
a, b and d light blue circles, mid-earlyhybrids (G2), dark blue squares, intermediate
hybrids (G3), red triangles, mid-late hybrids (G4). In c, purple empty circles,
diversity panel; red and yellow empty circles, genetic progress panel, hybrids
released before 1980 and 2000, respectively; green empty circles, hybrids released
after 2000. In a, r = 0.57 (95% CI = 0.19–0.81), n = 21, df= 19, p-value = 0.007,
CVRMSE = 7.7%. In b, r = 0.49 (95% CI = 0.12–0.74), n = 26, df = 24, p-value = 0.011,
CVRMSE = 5.3%, In c, r = 0.58 (95% CI = 0.50–0.65), n = 302, df = 299, p-value < 2.2E-
16, CVRMSE = 5.2%. In d, r = 0.53 (95% CI= 0.30–0.71), n = 50, df = 48, p-value = 6.3E-
05, CVRMSE = 2.8%. Significance of the correlation coefficients was tested using two-
sided t-test. For spearman correlation of ranks (rho) and other statistics, see Sup-
plementary Tables 4 and 5. Source data are provided as a Source Data file.
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Fig. 2 | Theduration of the vegetative phase, a trait measured in most breeding
schemes, was not better related between different fields than other traits
compared indoor and in thefield inFigs. 1–4. a, bComparison of observed values
in 3field experiments. c Comparison of observed mean genotypic values and mean
predicted values (G-BLUPs) in a 5-fold cross-validation scheme with 10 iterations.
d Comparison of observed mean genotypic values and predicted values, in the
independent dataset. Observed values originated from data of a, b (BLUEs) and
G-BLUP model calibration was performed using dataset of c. In a, b and d, light blue
circles, mid-early hybrids (G2), dark blue squares, intermediate hybrids (G3), red
triangles, mid-late hybrids (G4). In c, purple empty circles, diversity panel, red and
yellow empty circles, genetic progress panel, hybrids released before 1980 and
2000, respectively; green empty circles, hybrids released after 2000. In a, r = 0.69
(95% CI = 0.52–0.81), n = 53, df = 51, p-value = 9.4E-09, CVRMSE = 4.4%. In b, r = 0.47
(95% CI = 0.23–0.65), n = 55, df = 53, p-value = 0.0003, CVRMSE = 7%, In c, r = 0.84
(95% CI = 0.81–0.89), n = 302, df = 300, p-value < 2.2E-16, CVRMSE = 2.7%. In
d, r = 0.71 (95% CI = 0.56–0.82), n = 60, df = 58, p-value = 1.5E-10, CVRMSE = 2.5%.
Significance of the correlation coefficients was tested using two-sided t-test. For
rho and other statistics, see Supplementary Tables 4 and 5. Source data are pro-
vided as a source Data file.
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performed. Conversely, drone imaging in the field results in the cal-
culation of a related trait, the Average Leaf inclination Angle (ALA),
derived from the inversion of the radiative transfer model
‘PROSAIL’41,42, which takes into account the deviation of light inter-
ception efficiency of a given canopy in relation to a standard canopy
having the same leaf area. The genotypic values of ALA measured in the
field correlated to those of rhPAD measured in a phenotyping platform
in an experiment with 56 maize hybrids of the ‘genetic progress’ panel
(Fig. 3b, Field 5, Supplementary Tables 2 and 4). The same applied to
20 hybrids of the ‘recent hybrids’ panel in two field experiments, with
good relationships between rhPAD and ALA (Fig. 3c, d), high heritability
of both variables (Supplementary Fig. 1) and good conservation of
lowest and highest quartiles (Supplementary Table 4). Notably, ALA
values and heritability were sensitive to crop phenological stage

whereas those of rhPAD were more stable (Supplementary Fig. 1).
Hence, architectural data collected indoor were, in this case, appro-
priate for characterizing each genotype inmodels of light interception,
whereas ALA measured in the field would be more complex to use in
this context.

In the same way, the leaf expansion rate of individual plants (LER)
can only be measured indoor, with good heritability (Table 1)43. Cor-
responding measurements in the field are leaf area or leaf dimensions
at given dates, so direct comparisons were not possible. However, we
show below that the final width and length of maize 8th leaf matched
between indoor and field conditions for the diversity panel. Hence,
final leaf dimensions potentially allow indirect calculation of LER in the
field44.

Leaf area index (LAI), a key feature for light interception and
transpiration, is defined for a fraction of field canopy (typically 1 m2).
Although heritable within a given field, it largely differs between fields
in relation to environmental conditions and plant density45. It can be
measured indoor, but a direct comparison with the field would make
no sense because the density and spatial arrangement of plants in
indoor experiments make the considered canopy irrelevant to the
field24,46. Indeed, LAI measured in thefield was not correlated to the LAI
calculated by considering plant leaf area measured indoor at flowering
time, multiplied by the plant density in the corresponding field (Sup-
plementary Fig. 2, r = −0.25, n = 51, p-value = 0.073). This was because
environmental conditions and management practices were too dif-
ferent between the greenhouse and the field. Instead, we calculated
LAI based on the genotypic values of upstream traits measured indoor
(Table 2 and Fig. 4). We compared (i) measured values in the field,
obtained via UAV imaging and the inversion of the PROSAIL radiative
transfer model41,42 with (ii) the LAI simulated by a crop model11. Model
inputs were the genotypic values of four traits measured in indoor
platform (LAR, maximum leaf growth rate (LER), responses of leaf
growth rate to VPD and soil water potential, and final leaf number),
plus plant density and the environmental conditions recorded every
hour in the considered field. The correspondence between measured
and estimated LAI, tested on the ‘genetic progress’ panel suggested
that this approach is promising in well-watered (WW) condition
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Fig. 3 | Plant architecture translated from platform to field, and could be
inferred via genomic prediction. a Schematic representation of average leaf
inclination angle (ALA) in the field, estimated from UAV images at flowering time,
via inversion of the model PROSAIL42,75 and rhPAD measured indoor as the relative
altitude, from the top of the plant, where 50% of leaf area is reached15. b, c and d
Correlations between rhPAD (indoor) and ALA (Fields 5, 4 and 2, respectively) for
the genetic progress panel (b) and the recent hybrids panel (c, d). e Comparison of
observed mean genotypic values and mean predicted values (G-BLUPs) in a 5-fold
cross-validation scheme with 10 iterations for rhPAD. f Comparison of mean geno-
typic values (BLUEs) and predicted values (G-BLUPs) in the independent dataset. In
b, c and f, light blue circles, mid-early hybrids (G2), dark blue squares, intermediate
hybrids (G3), red triangles, mid-late hybrids (G4). In d, purple empty circles,
diversity panel; red and yellow empty circles, genetic progress panel, hybrids
released before 1980 and 2000, respectively; green empty circles, hybrids released
after 2000. In b, r = 0.77 (95% CI = 0.64-0.86), n = 56, df = 54, p-value = 2.85E-12. In
c, r = 0.58 (95% CI = 0.15–0.82), n= 18, df = 16, p-value = 0.012. In d, r = 0.60 (95%
CI = 0.18–0.83), n = 18, df = 16, p-value = 0.009. In e, r = 0.65 (95% CI = 0.59–0.72),
n = 302, df = 297, p-value < 2.2E-16, CVRMSE = 9.4%. In f, r = 0.42 (95% CI = −0.02 ̶
0.73), n = 20, df = 18, p-value = 0.06, CVRMSE = 15.6%. Significance of the correlation
coefficients was tested using two-sided t-test. For rho and other statistics, see
Supplementary Tables 4 and 5. Source data are provided as a Source Data file.
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Fig. 4 | Genotypic values of leaf area index (LAI) measured in the field were
correlated with values of LAI derived via a crop model taking into account
traits measured indoor and environmental data measured in the considered
field. a well-watered; b water-deficit. Field values (on y axis) were obtained at
flowering time from UAV images via inversion of the model PROSAIL41, 42. Values on
x axis were obtained via the crop model of Lacube et al.11, fed with measured values
of (i) environmental conditions in the same field, (ii) genotypic values measured in
the platform for leaf appearance rate (LAR), maximum leaf growth rate (LER),
responses of leaf growth rate to vapor pressure deficit (VPD) and soil water
potential, and final leaf number per plant. Each point, one genotype. In a, r = 0.64
(95% CI = 0.45-0.78), n = 51, df = 49, p-value = 3.6E-07, CVRMSE = 15.7%. In b, r = 0.44
(95% CI = 0.18–0.64), n = 51, df = 49, p-value = 1.3E-03, CVRMSE = 19.6%. Significance
of the correlation coefficients was tested using two-sided t-test. For rho and other
statistics, see Supplementary Table 4. Source data are provided as a Source
Data file.
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(r = 0.64, n = 51, p-value = 3.6E-07, Fig. 4a), and even in water-deficit
(WD) condition although the indoor platform experiment was per-
formed in WW condition, except for the response of leaf growth rate to
soil water potential (r = 0.44, n = 51, p-value = 1.3E-03, Fig. 4b and
Supplementary Table 4). Notably, the PROSAIL model inversion
allowing LAI estimation in the field always resulted in values lower than
4.5 for all hybrids. When the real LAI was higher, light interception
efficiency was close to 100%, so model inversion could not provide LAI
values higher than 4.547.

Finally, stomatal conductance is a difficult case in which traits
cannot be directly measured at high throughput, either in the field or
in indoor platforms. Its measurement for one leaf requires between 3
and 15 min, depending on the considered device, making high-
throughput measurements impossible. However, it can be indirectly
estimated at plant level in platform experiments by inversion of the
Penman-Monteith equation, based on measurements of individual
plant transpiration, leaf area, light, and VPD14. Resulting estimations of
whole-plant stomatal conductance were well related to leaf stomatal
conductance measured via gas exchange, between well-watered and
water deficit treatments (Fig. 5a and Supplementary Table 1), but also
between genotypes in the well-watered treatment (r2 = 0.54).

Overall, the ranking of genotypes for leaf appearance rate, plant
architecture, and LAI were consistent between field and indoor con-
ditions, thereby opening the way for a prediction of values in the field
based on platform information (Table 2 and Supplementary Table 4).
This could not be tested for stomatal conductance, for which field
measurements cannot be performed and indirect measurements via
canopy temperature are not precise enough in non-extreme
conditions.

The differences in absolute values of traits between indoor and
fields were accounted for by environmental conditions
Beyond the correlations between genotypic values of traits measured
indoor and in the field, it is the absolute values of traits, measured in
each experiment, that eventually drive the adaptation of studied
genotypes to drought and high temperature. For example, a correct
estimation of genotype ranking for LAI has a very small impact on light
interception if all genotypes have a LAI higher than 4, whereas the
same genotype ranking in a range of LAI from 2 to 4 has a large
impact47. Meta-analyses showed that phenotypic values differ between
controlled conditions and field24, but they also largely vary from one
field to another one11,24. Hence, we tested if the difficulty for translating
values between two experiments may not be specific to field – plat-
form comparisons, but applies to comparisons between any environ-
ment and another one, depending on environmental conditions in
each experiment.

This hypothesis was first tested by examining the mean absolute
values of maize leaf length and width between field and indoor plat-
forms for the diversity panel in Lacube et al.44. A superficial analysis
would suggest that the mean dimensions of leaf 8 largely differed
between indoor and field conditions, with a mean leaf length of 115 vs
76 cm, respectively, and a mean leaf width of 6.8 cm vs 7.5 cm,
respectively (note the inversion of ranking between the two traits).
However, leaf dimensions also largely varied among field experiments,
from 6.8 to 10 cm for leaf width and from 68 to 102 cm for leaf length
(Fig. 6a, b). We showed earlier that leaf width depends on the amount
of light intercepted during the growth of the considered leaf44.
Accordingly, leaf width in the field was linearly related to the cumu-
lated intercepted light (r = 0.83, n= 64,p-value < 2.2E-16), and the same
relationship accounted for the difference between experiments in
fields and platform (Fig. 6a). In the same way, the large variability of
leaf length, infield and controlled conditions,was accounted for by the
vapor pressure deficit (VPD) during leaf growth (Fig. 6b, r = −0.62,
n = 44, p-value = 6.2E-06), consistent with studies showing a linear
effect of VPD on leaf elongation rate43. Hence, leaf width and length did

not differ intrinsically between indoor and field conditions: differences
were accounted for by the same environmental conditions than those
that accounted for differences between one field and another one, and
could be calculated via a crop model11.

A similar case occurred with temperature-dependent traits, such
as the duration of the vegetative phase (Fields 1, 2, and 3, Supple-
mentary Table 2) or leaf appearance rate (Fields 1, 3 and PhenoArch,
Supplementary Table 2). When expressed in calendar time, these trait
values differed greatly between environments (Supplementary Fig. 3a,
b), whereas they were consistent if the effect of temperature was taken
into account via a model of thermal time48,49. Expressed in this way,
measured values were similar between field experiments for the
duration of the vegetative phase and for LAR (Figs. 2a, b and 1b,
respectively) or between a field experiment and an indoor platform
experiment (Fig. 1a), although some differences still existed between
experiments (CVRMSE = 4.4% and 7% in Fig. 2a, b, CVRMSE = 5.3% and 7.7%
in Fig. 1a, b). Among possibilities for explaining such differences in
duration of the vegetative phase and LAR, the frequency of field visits
was three days on average, but slightly differed between experiments.

Overall, values translation from indoor platforms to field, and
from onefield to another field, could be carried out for a range of traits
by taking into account appropriate environmental variables.

Measurements in indoor platforms can be used for genomic
prediction of traits
High-throughput phenotyping allows characterization of some hun-
dreds of genotypes (at most) whereas many thousands of genotypes
are required for breeding3,4. In the same way, it would not be feasible to
phenotype the offspring at each generation of speed breeding because
of the resulting cost and workload34,36. Hence, the use of physiological
traits in breeding requires one’s ability to predict them based on
genomic information, as it is the case for yield50,51. We have tested this
possibility for the traits presented in the former paragraphs. Briefly, we
trained a G-BLUP model based on the 246 hybrids of the ‘diversity
panel’ and the 56 hybrids of the ‘genetic progress’ panel (Supple-
mentary Table 1). This training was performed with the genotypic
means (BLUEs over the experiments carried out in Millet et al.31 and
Welcker et al.9) of the duration of the vegetative phase, the leaf
appearance rate, maximum leaf expansion rate (calculated with two
methods based on different assumptions, see “Methods” section), the
architectural trait rhPAD and stomatal conductance. Predictions were
performed using the genomic information at 440 000 polymorphic
SNPs. Prediction accuracies and RMSEs were assessed either with a
5-fold cross-validation (CV1) scheme28 (random sampling of hybrids
using a stratification strategy for respecting the proportions of genetic
groups, Supplementary Fig. 4), or with an external validation set made
of genotypic trait means estimated in the ‘recent hybrids panel’
(independent experiments, Supplementary Data 1).

Cross-validation provided good quality of prediction for studied
traits, assessed either by the correlation (r) between observed BLUEs
and predicted G-BLUPs values, or by the prediction accuracy of
genomic selection (Acc), calculated by dividing the correlation coef-
ficient (r) by the square root of trait genomic heritability52,53 (Table 2).
This was the case for leaf appearance rate (r = 0.58, n = 302, p-value <
2.2E-16, CVRMSE = 5.2% in Fig. 1c), leaf expansion rate (r = 0.76, n = 302,
p-value < 2.2E-16, CVRMSE = 8.7% in Fig. 7a), rhPAD (r = 0.65, n = 302, p-
value < 2.2E-16, CVRMSE = 9.4% in Fig. 3e) and stomatal conductance
(r = 0.56, n = 302, p-value < 2.2E-16, CVRMSE = 8.4% in Fig. 5b) (Supple-
mentary Table 5). These values are similar but slightly lower than those
for the duration of the vegetative phase in our study (r = 0.84, n = 302,
p-value < 2.2E-16, CVRMSE = 2.7% in Fig. 2c), and for yield or flowering
time traits in other studies51,54–56. Notably, genomic prediction with
G-BLUP model performed similarly for the genotypes originating from
the two panels, in spite of the difference in structure and origins of
these panels (Supplementary Fig. 5) and the fact that measurements
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were performed in different experiments. Furthermore, when pre-
dicting traits with a PC-BLUP model that is used as predictors the
genotypes coordinates on the first five axes of SNP PCoA (Principal
Coordinate Analysis) of the panels (Supplementary Fig. 5), the pre-
diction quality decreased when considering individual clouds of points
corresponding to each panel (Supplementary Fig. 6 and Supplemen-
tary Table 6).

The range of G-BLUP predicted values was expectedly smaller, for
all tested traits, than that of observed values. This bias is linked to the
fact that the narrow-sense heritability estimated using genomic addi-
tive and dominance relationships of studied traits was lower than 1
(0.68–0.82, 0.56–0.63, 0.54–0.62, 0.54–0.74, and 0.48–0.53 for the
duration of the vegetative phase, LAR, leaf expansion rate, rhPAD and

stomatal conductance, respectively, Table 1). Hence, the prediction
based on genomic information covered a smaller range of values than
original data.

The external validation was a more challenging scheme, where we
tried to predict the performance of new genotypes evaluated in new
independent experiments. Moreover, the ‘recent hybrids panel’ used
here covered smaller ranges of trait phenotypic values than those in
the ‘diversity’ and ‘genetic progress’ panels considered jointly. Con-
sequently, the comparison of observed vs G-BLUP predicted values led
to lower prediction accuracies than in the case of cross-validation (r
ranged between 0.34 and 0.71, Table 2). This applied to traits mea-
sured indoor (LAR, Fig. 1d, LER, Fig. 7b and rhPAD, Fig. 3f) as well as for
the duration of the vegetative phase measured in the field (Fig. 2d and
Supplementary Table 5), so this problem was not specific of indoor
genomic prediction. The external validation using the simple PC-BLUP
model resulted in much lower prediction accuracies than that using
the G-BLUP model (Supplementary Fig. 6 and Supplementary Table 6).
This suggests that G-BLUP predictions captured genetic effects
beyond that explained by population structure.

Discussion
Three conditions can be considered as requirements for traits mea-
sured indoor to be used in trait-based selection in a context of climate
change. Firstly, traits measured indoor should be genetically corre-
lated to those infields (regardless of absolute values either indooror in
eachfield), so indoor breeding is relevant tofield conditions. Secondly,
the absolute value of indoor traits should translate to that infields with
diverse climate scenarios, either directly or via models. Finally, indoor
traits need to be predicted with sufficient accuracy from the genomic
information of non-phenotyped genotypes.

The traits presented here satisfied the first condition. Close cor-
relations were observed between the genotypic values of traits mea-
sured indoor and in multi-site field experiments. This was the case
when the considered trait was measured with similar protocols indoor
or in the field, for instance leaf appearance rate or the duration of the
vegetative phase. It was also the case when the trait was measured with
different methods as in the case of plant architecture. Finally, the
integrated trait LAI, which is highly dependent on the plant density and
environmental conditions in the considered canopy, required a
method involving crop modeling. The correlations observed in these
three cases between indoor platform and fields are therefore higher
(r=0.57 to 0.77, Table 2) than those reported by Poorter et al.24 for a
set of growth-related traits meta-analysis (median r=0.51). Two rea-
sons may explain this disparity. (i) Traits considered in Poorter’s meta-
analysis, namely yield, leaf nitrogen concentration and specific leaf
area are more integrated than those studied here (except LAI) and,
therefore more prone to high genotype x environment interactions
and changes in the ranking of genotypes. (ii) The traits studied here
had moderate to high heritabilities over experiments, thereby showing
a low residual variance resulting from experimental errors. Further-
more, measuring yield, yield components, or leaf area index in phe-
notyping platforms is probably not relevant because these traits result
from cumulative processes over a long period, during which condi-
tions indoor are very different from those in the field. The methods
presented here for comparing indoor and field trait values con-
siderably reduced the genotype x environment interaction (GEI) for
such integrated traits. For example, a direct comparison of LAI indoor
and in the field resulted in a high GEI, without correlation between
them. Conversely, the GEI was largely reduced when upstream traits
measured indoor (with a low GEI) were combined, via a crop model,
with the management practices and environmental conditions in the
considered field37.

The second condition, namely that trait values can translate from
indoor conditions to a diversity of fields, was fulfilled for the traits
reported here if the differences in environmental conditions were
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Fig. 5 | Stomatal conductance can be measured at plant level in an indoor
phenotypingplatform and predicted from genomic information. aComparison
between values obtained at leaf level via gas exchange, and at plant level via
inversion of the Penman-Monteith equation14, in well-watered and water deficit
treatments. b Comparison of observed mean genotypic values and mean (G-BLUP)
predicted values in a 5-fold cross-validation scheme with 10 iterations for plant
stomatal conductance. In a and b, each symbol, one genotype; blue, well-watered;
red, water deficit. In a, black line, linear regression. In b, black line is the 1:1 line. In
a, r = 0.92 (95% CI = 0.83–0.96), n = 26, df = 24, p-value = 2.4E-11, CVRMSE = 13%. In
b, r = 0.56 (95% CI = 0.47–0.63), n = 302, df = 293, p-value < 2.2E-16, CVRMSE = 8.4%.
Significance of the correlation coefficients was tested using two-sided t-test. For
rho and other statistics, see Supplementary Table 5. Source data are provided as a
Source Data file.
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taken into account, thereby dealing with the GEI via a previously
reported model31.

• Modeling temperature effects allowed consistency between
field and platform experiments for leaf appearance rate and the
duration of the vegetative phase in this study. This result can be
generalized to traits related to the progression of plant devel-
opment of many species. In particular, germination rate, leaf
appearance rate, the reciprocal of the duration of growth of
individual leaves and reproductive organs are commonto a large
range of environments if they are expressed in thermal time57.
Crop models, based on this result, successfully predict plant
phenology in wide ranges of environments8,30.

• The amount of intercepted light was also needed for other traits
to be consistentbetween experiments. This was the case here for
maize leaf width measured indoor and in several fields. Beyond
this particular trait, Monteith showed that biomass accumula-
tion is proportional to the cumulated light intercepted by
plants47. In particular, we showed that, in a series of experiments
with maize, the time course of plant biomass largely differed
between experiments but was consistent if expressed as a
function of intercepted light16. Again, crop models based on
intercepted light can predict plant biomass accumulation with
reasonable accuracy30,58.

• Plant water status was, in addition, necessary to account for
differences in traits related to organ expansive growth (expres-
sed in terms of volume or length). Its effect can be predicted
from the cell scale59 to the organ scale60–62. Here, this was the
case for leaf length in well-irrigated maize fields, as a function of
air VPD. Leaf elongation rate is closely related to a combination
of soil water potential and VPD in maize, fescue, or barley60,63, so
our result can probably be extended to other species. Stomatal
conductance can also be predicted from a combination of soil
water status, evaporative demand, and incident light via
functional models involving chemical and hydraulic signals64.
Crop models that take into account light, soil water content and
evaporative demand can predict stomatal conductance and net
photosynthesis by simulating physiological processes65,66, so
photosynthesis in controlled conditions can be extended to a
range of field conditions66.

Overall, we confirmed that raw phenotypic traits cannot translate
directly from indoor platforms to fields, as reviewed in Poorter et al.24.
However, taking into account specific environmental conditions
allowed this translation for the traits presented here, which depend on
one or two environmental conditions. Again, more integrated traits
such as leaf area index, grain number or grain yield measured in a
platform cannot be directly extended to field via simple relationships
as presented in former paragraphs. These traits can be predicted in a
range of field conditions based on genotype-specific parameters and
environmental conditions measured in the considered fields. This was
the case here for leaf area index, but was also the case for grain number
and grain yield in a multi-site field experiments, based on a mixed
model involving genetic parameters and environmental conditions31.

The third condition is that traits can be predicted from genomic
information. Here, cross-validation based on a large genetic range
showed good results (compared to Guo et al.56, Yuan et al.55, or Toda
et al.51), with r ranging from 0.56 to 0.84 for the studied traits (Table 2
and Supplementary Table 5). External validation on the panel of recent
hybrid varieties provided less accurate results, but correlations
between predicted and observed values still ranged from 0.34 to 0.71
and mostly with significant p-values (from 1.5 E-10 to 0.14) and
acceptable CV of errors (from 2.5% to 15.6%) (Supplementary Table 5).
By using this panel for external validation, we chose the most chal-
lenging case, in which one attempts to use a genomic prediction
model, trained with a panel with wide genetic variability, to predict
elite genotypes that have a reduced phenotypic variability for studied
traits.Hence, our results could not be considered as fully satisfactory if
the purpose was to rank elite genotypes (Supplementary Table 5).
Conversely, the cross-validation in a wider genetic range suggests that
genomic prediction may be used for identifying genotypes with high
or low genotypic values for studied traits in breeding populations with
higher genetic and phenotypic variabilities. This allows the design of
ideotypes with contrasting strategies in relation to water and heat
stress, namely ‘conservative’ ideotypes with low stomatal con-
ductance, leaf growth, leaf appearance rate, for stress-prone areas, vs
‘spender’ ideotypes with highest values for each of these traits.
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Fig. 6 | Leaf width and length responded similarly to environmental conditions
in fields and indoor platforms. a Relationship between leaf width and the
cumulated light intercepted by plants during leafwidening. bRelationship between
leaf length and leaf-to-air vapor pressure deficit (VPDla: mean of maximum daily
values) during leaf elongation. Each point, one experiment and leaf rank. Leaf width
and length values of four leaf ranks (8–11, circles, squares, diamonds and triangles,
respectively) were corrected for leaf rank so equivalent values for leaf 8 are
presented44. Blue dots: field, red dots: indoor platform. Black lines, linear regres-
sions. In a, r = 0.83 (95% CI = 0.73-0.89), n = 64, df = 62, p-value < 2.2E-16. In
b, r = −0.62 (95% CI = −0.78-0.40), n = 44, df = 42, p-value = 6.2E-06. Significance of
the correlation coefficients was tested using two-sided t-test. Source data are
provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-42298-z

Nature Communications | (2023)14:6603 8

bouidgha
Machine à écrire
CHAPTER 1

bouidgha
Crayon

bouidgha
Machine à écrire
34



Methods
Genetic materials
Three panels of maize hybrids were used in this study (Supplementary
Table 1). First, a diversity panel included 246 hybrids resulting from the
cross of a common flint parent (UH007) with 246 dent lines that
maximized the diversity in the dent group while keeping a restricted
flowering window31,67. This panel involved four genetic groups, namely
Iodent (39 hybrids), Lancaster (45 hybrids), Stiff-Stalk (55 hybrids), and
diverse-dent hybrids (107) consisting in an admixture of the former
three groups67. Second, a ‘genetic progress’ panel included 56 highly
successful commercial hybrids released on the European market from
1950 to 20159. This panel showed a limited range of maturity classes,

from mid-early (FAO 280) to mid-late (FAO 480), covering the largest
growing area in Europe. Finally, a ‘recent hybrids’ panel included 86
commercial hybrids released from 2008 to 2020, belonging to mid-
early to mid-late maturity classes (Supplementary Data 1). Yield data in
30 sites x 2 years per hybrid were available at the beginning of this
study (ARVALIS, www.varmais.fr).

Platform experiments
Platform experiments were performed in PhenoArch, an indoor
robotized and image-based phenotyping platform that allows precise
measurement of plant architecture, plant phenology and growth,
transpiration, stomatal conductance and water use efficiency (https://
www6.montpellier.inrae.fr/lepse/Plateformes-de-phenotypage-M3P/
Montpellier-Plant-Phenotyping-Platforms-M3P/PhenoArch)16 hosted at
Montpellier Plant Phenotyping Platforms (M3P). The diversity panel
was evaluated in four experiments (in spring 2012, 2013, and 2016, and
winter 2013) as described in Prado et al.14. Three or two plants per
hybrid were grown depending on the experiment (Supplementary
Table 1). The ‘genetic progress’ panel was evaluated in four experi-
ments, with most data used here originating from an experiment with
seven replicates per hybrid9. A subset of 20 hybrids of the ‘recent
hybrids’ panel was evaluated in one experiment during winter 2021,
with three replicates per hybrid. All experiments followed an alpha-
lattice design, with two levels of soil water content imposed, namely
retention capacity (well‐watered, soil water potential of −0.05 MPa)
and water deficit (soil water potential from −0.3 to −0.6 MPa
depending on the experiment). Soil water content in pots was main-
tained at target values by compensating transpired water three times
per day via individual measurements of each plant16. Soil water
potential was estimated from soil water content based on a water
release curve14. Air temperature and humidity were measured at six
positions in the platform every 15 min. Daily incident photosynthetic
photon flux density (PPFD) over each plant within the platform was
estimated by combining a 2D map of light transmission, and the out-
side PPFD measured every 15 min with a sensor placed on the green-
house roof16. The greenhouse temperature was maintained at 25 ± 4 °C
during the day and 17 ± 2 °C during the night. Supplemental light was
provided either during daytime when external solar radiation was
below 300 W m−2 or to extend the photoperiod by using 400 W HPS
Plantastar lamps.

In each experiment, the number of visible leaves of every plant
was manually scored weekly during the vegetative phase. Leaf
appearance rate (LAR, reciprocal of the phyllochron) was calculated as
the slope of the linear relationship between the number of visible
leaves and thermal time, during the period from plant emergence to
12-leaf stage.Red‐Green‐Blue (2056 × 2454) images taken from 13 views
(12 side views from 30° rotational difference and one top view) were
captured daily for each plant during the night. Plant pixels from each
image were segmented from those of the background and used for
estimating the whole plant leaf area and fresh biomass68. The time
courses of leaf area and plant fresh biomass were then fitted indivi-
dually by using P-spline growth curve models69. The architectural trait
rhPAD was calculated daily from 3D reconstructions of each plant,
based on RGB images at PhenoArch platform15. rhPAD index repre-
sented the point in the distribution of leaf area along the stem (from
the top of the plant, relative to total plant height) where half of the
cumulative leaf area is reached. Whole‐plant stomatal conductance
was calculated over 4 time‐periods per day for 20 days for each hybrid
plant in PhenoArch platform, via inversion of the Penman–Monteith
equation based on transpiration, plant growth, net radiation and VPD
collected in the experiment14. Its value under saturating light was
estimated for each hybrid by combining coupled values of stomatal
conductance and incident light observed in all experiments. The
maximum leaf expansion rate (LER) was extracted from time courses
of leaf area in the platform and corresponded to the maximum first-
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order derivative of P-spline fitted growth curves from 24 to 45 days at
20 °C after emergence69. Because this method provided somewhat
unstable results, we also calculated maximum LER as the slope of the
linear regression between leaf area and thermal time during the whole
period from 24 to 45 days at 20 °C.

Genotypic values (BLUEs) for each trait were estimated by cor-
recting raw traits values for spatial effects, by fitting a mixed model (R
package SpATS70,), with a fixed term for genotype and random effects
for rows and columns as well as a smooth surface defined on row and
column coordinates. Broad-sense heritabilities were calculated daily
with the same R package, using the same model but with the genotype
effect included as a random term. Regarding longitudinal traits, gen-
otypic values at individual time points, t, were obtained from their
smoothed time series using a generalized additive model fitted to the
spatially adjusted daily measurements, eyi,k tð Þ, for each plant k of gen-
otype i:

eyi,k tð Þ=αi + f i tð Þ+ ϵi,k tð Þ,ϵi,k tð Þ∼Nð0,σ2Þ ð1Þ

where αi is a genotype-specific intercept, fi (t) is a genotype-specific
thin plate regression spline function on time, and ϵi,k (t) is a random
error term (R package statgenHTP69,71,).

Genomic heritability (narrow-sense, hg
2) was estimated for each

trait, panel and experiment with a model considering genomic-based
additive and dominance relationship matrices72, using the R package
“BGLR”73.

Field experiments
The diversity panel was grown in 25 experiments (defined as combi-
nations of site × year × water regime), either rainfed or irrigated, in ten
sites in 2012 or 201331. Sites were distributed on a west–east transect
for temperature and evaporative demand, across Europe at latitudes
from 44° to 49° N. The ‘genetic progress’ panel was grown in 26 field
experiments either rainfed or irrigated, in 16 European sites from 2010
to 2017 spread along the same climatic transect as for experiments
with the diversity panel9. The ‘recent hybrids’ panel was grown in four
field experiments under irrigated conditions in the same range of
latitudes, in 2021 or 2022 in France (Supplementary Table 2). Experi-
ments followed an alpha-lattice design or randomized complete block
design (RCBD) and were split by varieties maturity classes (Supple-
mentary Table 2), each with three replicates of four-row plots, 6 m
long. The targeted plant density was 9 plants m−2. In all experiments,
anthesis and silking dates were scored by visiting experiments every
third day. The number of appeared leaves was scored every week on
ten plants per hybrid during the vegetative phase, and leaf appearance
rate was calculated as in indoor experiments (Supplementary Table 2).

The duration of the vegetative phase was defined as the period
from plant emergence to anthesis, expressed in thermal time
(equivalent days at 20 °C)48. Leaf appearance rate was estimated as in
platform experiments.

UAV flights were performed three times in one experiment of the
‘genetic progress’ panel during the period from plant emergence to
flowering, and seven times in two experiments for the ‘recent hybrids’

panel during the same period (Supplementary Table 2). Quadcopter
drone (DJI Phantom 4) were equipped with a DJI multispectral camera
with 5.7 mm focal length lens, acquiring 1600×1300 pixel images. They
flew at a controlled altitude of 20 m and a constant speed of 2.2 m s−1

for about 20 min per flight, with images captured at a one-second
interval. Flights were performed during clear and cloudless days
between 8:00 and 10:00 solar time. An automatic image-processing
pipeline was applied by Hiphen, Avignon, France (http://www.hiphen-
plant.com), following methods presented in Blancon et al.20. Environ-
mental variables were recorded every hour in all experiments,
including light, air temperature, relative humidity (RH), rainfall and
wind speed. Soil water potential was measured every day with

tensiometers at 30 and 60 cm depths with three or two replicates,
located in plots sown with a common reference hybrid.

The architectural trait ALA (Average Leaf inclination Angle to the
soil level) and Leaf Area Index (LAI) were calculated by inversion of the
PROSAIL model41,74, based on multispectral images of field UAV flights.
The PROSAIL model couples the PROSPECT leaf optical properties
model with the SAIL canopy bidirectional reflectance model. It links the
spectral variation of canopy reflectance, which is mainly related to leaf
biochemical contents, with its directional variation, which is primarily
related to canopy architecture and soil/vegetation contrast75. This link
allows simultaneous estimation of canopy biophysical/structural vari-
ables from remote sensing, including ALA and LAI traits42,76.

Leaf area index was also calculated by using a crop model (APSIM
model as modified in Lacube et al.11) parameterized with the genotypic
values (BLUEs) of four traits measured in PhenoArch platform (LAR,
maximum leaf growth rate, response of leaf growth rate to VPD and
final leaf number), plus the environmental and growing conditions
recorded in the considered field.

Spatial corrections, calculations of genotypic values and herit-
abilities of traits were performed with the same methods as in indoor
experiments.

Correlation analysis between experiments
Pearson (r) and Spearman (rho) correlation coefficients were calcu-
lated to evaluate to which extent the genotypic values (BLUEs) of traits
match between experiments, either in one field and another one, or in
one field and the indoor platform. Both types of correlations was
performed on the hybrids that were common to considered experi-
ments (common hybrids number ranged from 18 to 56, Supplementary
Data 1 and Supplementary Table 4). The significance of correlation
coefficients was evaluated based on the null hypothesis that there is no
correlation between the variables (r or rho = 0). Genetic correlations
(rg) between experiments were also assessed, using a multivariate
Bayesian Gaussian mixed model, fitted for each couple of experiments
(bivariate analysis, Table 2), with MTM R package38,39. Model fitting was
based on 60,000 iterations, after discarding 10,000 cycles for burn-in
period and using a thinning rate of 5. Each multivariate model imple-
mented had the form:

yi =μi1n +Za iai +Zd id i + εi ð2Þ

where the subscript i refers to experiments (two experiments analyzed
jointly, with trait values measured either indoor and in a field or in two
different fields, Table 2), yi is the vector of trait values (BLUEs) of n
hybrids in the considered couple of experiments,μi is the overall mean
(intercept), a i is the vector of random additive genetic effects,d i is the
vector of random dominance effects and εi is the vector of random
residual effects. Zai and Zdi are the incidence matrices for a i and d i,
respectively.

Variance components were calculated assuming: a i ∼ MVN (0,
GA⊗Va) with GA as the genomic-based additive relationship matrix
described below and Va as the additive effects variance–covariance
matrix, d i∼MVN (0, GD⊗Vd) with GD as the genomic-based dominance
relationship matrix described below and Vd as the dominance effects
variance–covariance matrix, εi ∼ MVN (0, I⊗R) where I denotes the
identity matrix and R is the residual effects variance–covariance matrix.

Standard errors (SE) of all correlation coefficients were estimated
using Bonett and Wright approximations77. Additionally, the theoretical
accuracy of indirect selection (iAcc), i.e. in case of an indirect pheno-
typic selection based on observed values in a given experiment (indoor
or in a field), was calculated as the genetic correlation between the
considered couple of experiments, multiplied by the square root of
trait genomic heritability in the reference experiment for selection52

(Supplementary Table 4). Then, we quantified the efficiency of indirect
selection relative to a direct phenotypic selection in the targeted
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environment (Eff), by dividing the accuracy of indirect selection by the
square root of trait genomic heritability in the target field experiment52.

Root mean squared error of estimations (RMSE) and bias showing
the discrepancy between experiments genotypic values (BLUEs) were
calculated too. We present them as a coefficient of variation of the
error (CVRMSE) or bias (CVBias), which is the RMSE or bias expressed as a
percentage of the mean value. Finally, to appreciate the consistency
between experiments of the highest and lowest genotypic values, we
evaluated the frequency of similar assignment to the highest or the
lowest quartile between experiments for each trait. This consisted of
estimating how many hybrids of the highest quartile of one experi-
ment were also present in the highest quartile of the other experiment
(Supplementary Table 4). The same was performed for the lowest
quartile.

Genotypic data and diversity analyses
All panels were genotyped using the 600 K Affymetrix®Axiom® array78.
Genotypes of the hybrids were either inferred from genotypes of the
parental lines (diversity panel) or resulted from the direct genotyping
of the hybrids (genetic progress and recent hybrids panels). After
quality control, 440,000 polymorphic SNPs were retained for diversity
analyses and genomic prediction (excluding SNPs with minor allele
frequency lower than 0.05 and/or missing values for more than 20% of
hybrids). Missing values were otherwise imputed using BEAGLE v379.

Genotypic data generated were organized as M matrices with N
rows and L columns, N and L being the panel size and number of
markers, respectively. Genotype of hybrid n at locus (SNP marker) j
was coded as 0 (the homozygote for B73 line allele), 1 (the hetero-
zygote) or 2 (the other homozygote). “snpReady” R package80 was
used to estimate observed heterozygosity as

Ho =
1
L

XL

j = 1
ðnHj=NÞ ð3Þ

and Nei’s index of genetic diversity as

Nei GD =
1
L
=
XL

j = 1
ð1� pj

2 � ð1� pjÞ
2Þ ð4Þ

with N the number of hybrids, nHj is the number of heterozygous
hybrids at the jth biallelic locus, L is the total number of loci, and pj is
the frequency of the reference (B73 line allele) at locus j (Supple-
mentary Table 7). Principal Coordinate Analysis (PCoA) was also per-
formed on SNP markers data (Supplementary Fig. 5).

Genomic prediction model
Genomic predictions of each trait was performed with a genomic best
linear unbiased prediction model (GBLUP-AD), including random
additive and dominance effects:

y =μ1n +Zaa+Zdd + ε ð5Þ

where y is the vector of trait genotypic means (BLUEs over experiments)
of n hybrids, µ is the overall mean (intercept), a is the vector of random
additive genetic effects, and is assumed to follow a normal distribution
∼N (0, GAσa

2) with GA as the genomic-based additive relationship matrix
described below and σa

2 as the additive genetic variance; d is the vector
of random dominance effects which follows a normal distribution ∼ N
(0, GDσd

2) with GD as the genomic-based dominance relationship matrix
described below and σd

2 as the dominance genetic variance; ε ∼ N (0,
Iσε

2) is the vector of random residual effects, where I denotes the
identity matrix and σε

2 is the residual variance. Za and Zd are the
incidence matrices for a and d, respectively.

The genomic-based relationship matrices were built as defined in
Vitezica et al.72 and González-Diéguez et al.81. The genomic-based

additive relationship matrix (GA), called realized relationship matrix
was estimated as

GA =
HaHa

0

trðHaHa
0Þ=N

ð6Þ

where Ha is a rescaled genotype matrix Ha = M–P, where M is the
genotype matrix coded as 0, 1, and 2 for genotypes BB, Bb and bb
respectively and with dimensions number of hybrids (N) by number of
loci (L); P is the matrix of locus scores 2pj, with pj being the reference
allele frequency of the jth SNP biallelic locus (having alleles B/b); tr is
the trace. The genomic-based dominance relationship matrix (GD) was
estimated as

GD =
HdHd

0

trðHdHd
0Þ=N

ð7Þ

where Hd is the matrix containing elements hd for each individual and
locus equal to:

hd =

�2pBbpbb pBB +pbb � ðpBB � pbbÞ2
h i�1

4pBBpbb pBB +pbb � ðpBB � pbbÞ2
h i�1

�2pBbpBB pBB +pbb � ðpBB � pbbÞ2
h i�1

8
>>>>><

>>>>>:

for genotypes

BB

Bb

bb

8
><

>:

ð8Þ

where pBB, pBb, and pbb are the genotypic frequencies for the geno-
types BB, Bb, and bb respectively at the locus.

For moderate heritability physiological traits (LER and gsmax), in
addition to random additive and dominance effects estimated from
genomic-based relationship matrices, the genotypes of markers asso-
ciated to quantitative trait loci (QTLs), previously identified in a
genome-wide association study (GWAS) of the diversity panel14, were
added as fixed effects in prediction models:

y =μ1n +Xβ +Zaa+Zdd + ε ð9Þ

where X is an n × l marker genotype matrix for n hybrids and I markers
associated to trait QTLs and β is the markers fixed effects vector.

To test if G-BLUP model predictions are capturing genetic effects
above that explained by population structure, we fitted a simple PC-
BLUP model to the same data. In this model, the genotypes coordi-
nates on the first five axes of SNP PCoA of the panels (representing of a
cumulative percentage of variance of 35%), were used as predictors.
Other genomic prediction models (RR-BLUP, BayesB, BayesC, and
BayesR) were also tested but showed no significantly better results
than those presented in this paper.

All prediction models were fitted using the Bayesian Generalized
Linear Regression (BGLR) R package73, based on 60,000 iterations,
after discarding 10,000 cycles for burn-in period and using a thinning
rate of 5.

Training and validation schemes of genomic predictions
Genomic predictions were first evaluated by a 5-fold cross-validation
scheme (CV1) repeated 10 times, applied to diversity and genetic
progress panels datasets. In CV1, we aimed to measure the ability of the
models to predict the performance of hybrids that would not have
been evaluated in any of the observed environments28. For each
iteration, the two panels genotypes were split into 5 subsets, then each
subset (one fifth) was predicted using the remaining four fifths as
training set. This generated a total of 5 × 10 testing sets. Each training
set was sampled randomly but proportionally to ‘diversity panel’
genetic groups and across years of releaseof ‘geneticprogress’ hybrids
(Supplementary Fig. 4). This sampling method was chosen to maintain
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a good coverage of the total genetic space covered by the training
set82. The ‘recent hybrids’ panel dataset was then considered as an
external validation of the prediction models. Here, the ‘diversity’ and
‘genetic progress’ panels were used together as training set, and pre-
dictions were made for the recent hybrids observed in independent
experiments.

Five statistics were calculated to assess the performance of pre-
diction models for each trait: the Pearson (r) and Spearman (rho)
correlation coefficients between observed genotypic means (BLUEs
over experiments) and predicted values (G-BLUPs), the prediction
accuracy of genomic selection (Acc, estimated as the predictive ability
(r) divided by the square root of trait genomic heritability53), the root
mean squared error of predictions (RMSE) showing the discrepancy
between predicted and observed values and the coefficient of variation
of the error (CVRMSE), which is the RMSE expressed as a percentage of
mean observed value. For cross-validation scheme, the statistics esti-
mations were performed within each fold and then averaged across
folds and iterations. Standard errors (SE) of correlation coefficients
were calculated using Bonett and Wright approximations77.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated in this study have been deposited in the Recherche
Data Gouv database [https://recherche.data.gouv.fr/fr]. The datasets
for phenotypic and genotypic values for the diversity panel are avail-
able at https://doi.org/10.15454/IASSTN. The datasets for phenotypic
and genotypic values for the genetic progress panel are available at
https://doi.org/10.15454/KLD0GH. The dataset for the ‘recent hybrid’

panel is available at https://doi.org/10.57745/NZY1KL. Source data are
provided with this paper.
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Supplementary Table 1. Panels of hybrids and corresponding experiments with 

analysed traits in this study.  

*One indoor platform experiment with a subset of 20 recent hybrids. LAR: Leaf Appearance Rate. LER: 

Leaf Expansion Rate. gs: Stomatal Conductance. rh
PAD

: relative height at 50% of leaf area. Leaf 

dimensions: length and width. VPD: Vapour-pressure deficit. ALA: Average Leaf inclination Angle. LAI: 

Leaf Area Index. Detailed information for hybrids and experiments used for the diversity panel and the 

genetic progress panel are available at the URLs provided in this table. 

https://doi.org/10.1038/s41588-019-0414-y
https://doi.org/10.1038/s41588-019-0414-y
https://doi.org/10.15454/KLD0GH
https://data.inra.fr/dataset.xhtml?persistentId=doi:10.15454/IASSTN
https://data.inra.fr/dataset.xhtml?persistentId=doi:10.15454/IASSTN
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Supplementary Table 2. Experiments performed for the ‘recent hybrids’ panel                                      

and Experiments carried out at Field 5, Field 6 & Indoor for 'genetic progress' panel 

 

 

 

 

 

Name exp. : Experiment name used in the text; Year, year when the experiment was done. 

Treatment : WW, imposed well-watered (controlled by sensors). WD, imposed water deficit 

(controlled by sensors) 
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Supplementary Table 3. Summary of variance components and genomic heritability 

estimated in the experiments considered in this study  

#Hyb, number of hybrids. h
g

2
, genomic heritability. σ

g

2
, total genetic variance. σ

a

2
 and σ

d

2
, variances 

explained by additive and dominance relationship matrices, respectively. σ
e

2
,
 
residual variance.  
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Supplementary Table 4. Summary of correlation analysis and accuracy results 

estimated between experiments genotypic values for four traits 

r, Pearson correlation coefficient. SE r, Standard Error of r. rho, Spearman correlation coefficient. SE rho, 

Standard Error of rho. e. RMSE, Root Mean Square Error. CV
RMSE

, RMSE Coefficient of Variation. CV
Bias

, 

Bias Coefficient of Variation. FSA to the highest quartile, Frequency of Similar Assignment to the highest 

quartile between experiments for each trait. FSA to the lowest quartile, Frequency of Similar Assignment 

to the lowest quartile between experiments for each trait. iAcc, Theoretical accuracy of indirect selection, 

i.e. in case of indirect selection based on trait observed values in a given experiment (indoor or in a field), 

calculated as the genetic correlation between the considered couple of experiments multiplied by the 

square root of trait genomic heritability in the reference experiment for selection
52

. Standard error (SE) 

estimates
76

 are shown after the ± symbol. 
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Supplementary Table 5. Summary of G-BLUP genomic prediction results in cross-

validation and external validation schemes 

Mean r, Mean rho, Mean RMSE, Mean CV
RMSE

 : Pearson & Spearman correlation coefficients, Root Mean 

Square Error and RMSE Coefficient of Variation, respectively, estimated between G-BLUP predicted values 

and measured values, averaged across folds and 10 iterations in a cross-validation scheme including 

diversity and genetic progress panels. r, rho, RMSE, CV
RMSE

 : Pearson & Spearman correlation coefficients, 

Root Mean Square Error and RMSE Coefficient of Variation, respectively, estimated between G-BLUP 

predicted values (with training on diversity and genetic progress panels) and measured values in recent 

hybrids panel, used as external validation. Standard error (SE) estimates
76

 are shown after the ± symbol. 
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Supplementary Table 6. Summary of PC-BLUP model prediction results in cross-

validation and external validation schemes 

Mean r, Mean rho, Mean RMSE, Mean CV
RMSE

 : Pearson & Spearman correlation coefficients, Root 

Mean Square Error and RMSE Coefficient of Variation, respectively, estimated between PC-BLUP 

predicted values and measured values, averaged across folds and 10 iterations in a cross-validation 

scheme including diversity and genetic progress panels. r, rho, RMSE, CV
RMSE

 : Pearson & Spearman 

correlation coefficients, Root Mean Square Error and RMSE Coefficient of Variation, respectively, 

estimated between PC-BLUP predicted values (with training on diversity and genetic progress panels) 

and measured values in recent hybrids panel, used as external validation. Standard error (SE) 

estimates
76

 are shown after the ± symbol. 

Supplementary Table 7. Diversity analysis of the studied panels using Nei’s index of 

genetic diversity and observed heterozygosity level, based on 440 000 polymorphic 

SNP markers.  
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Supplementary Fig. 1. Time courses and broad‐sense heritability over time of 

genotypic values of the architectural traits (rhPAD and ALA) and their correlation heat 

maps for 5 dates. a & b, Time courses of rhPAD observed in indoor plarform and ALA 

observed in the field until flowering. c & d, Broad‐sense heritability over thermal time for 

rhPAD and ALA. e & f, Heat map of Pearson correlations between 5 thermal time points for 

rhPAD and ALA trait. rhPAD, relative altitude, from the top of the plant, where 50% of leaf area 

is reached
15

. ALA: average leaf inclination angle estimated from UAV images, via inversion 

of the model PROSAIL
42,75

. In a & b, lines represent 56 different hybrids. In e & f, statistically 

significant correlations are shown with an asterisk. 
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0.16 0.19 0.22 0.25 0.28

Observed LAR Field 1 (leaf/day)

Supplementary Fig. 2. Genotypic values of leaf area index (LAI) measured in the field in 

well-watered condition were not correlated to LAI values calculated by considering only 

plant leaf area measured indoor. 

Field values (on y-axis) were obtained at flowering time from UAV images via inversion of the 

model PROSAIL
41,42

. Values on x-axis were calculated as plant leaf area measured indoor at 

flowering time, multiplied by the plant density in the corresponding field. Each point represents a 

couple of observed genotypic values for one different hybrid of genetic progress panel. r = - 0.25, 

n=51, p-value = 0.073, CVRMSE = 30.9%.  
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Supplementary Fig. 3. Leaf appearance rate (LAR) when calculated in calendar time had 

low correlations between genotypic values indoor and a field (a) or from one field to 

another field (b). Light blue circles, mid-early hybrids (G2), dark blue squares, intermediate 

hybrids (G3), red triangles, mid-late hybrids (G4). In a, r=0.40, n=21, p-value = 0.069, CVRMSE = 

23.8%. In b, r=0.49, n=26, p-value = 0.0117, CVRMSE = 16.91%. 

b a 
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Supplementary Fig. 4. Schematic representation of genomic prediction cross-

validation strategy. Each training set was sampled randomly but proportionally to 

diversity panel genetic groups and across years of release of genetic progress hybrids. 

Training set 

Testing set 

Genetic Progress Panel Diversity Panel 

Hybrids released  
before 1980  

Hybrids released  
between 1980  

& 2000 

Hybrids released  
after 2000 



CHAPTER 1 

50 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Fig. 5. Structure and diversity analysis of the studied panels using a 

Principal Coordinate Analysis (PCoA) on SNP markers data. The PCoA was based on 

a set of 440 000 polymorphic SNP markers. The analysis first shows the structuration of the 

diversity panel parental lines into 4 genetic groups (Iodent on the bottom left, Lancaster on 

the top, Stiff_Stalk on the bottom right and the other diverse admixed genotypes in the 

middle). The genetic progress and recent hybrids panels mainly overlap with the Iodent and 

admixed genotypes of diversity panel. The representation of the diversity panel hybrids 

corresponding to the lines crossed with UH007, highlights the effect of the common parent 

UH007, which induces a strong genomic relatedness between the diversity panel hybrids 

and separates them from the other panels following the first PCoA dimension. 
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Supplementary Fig. 6. The prediction of traits via a PC-BLUP model was less accurate than 

that with G-BLUP models in Fig. 1cd, 2cd, 3ef, 5b and 7ab for cross-validations (a, c, e, g, i), 

and lost accuracy for external validation (b, d, f, h). a, c, e, g & i, Comparison of observed mean 

genotypic values and mean predicted values in a 5-fold CV scheme with 10 iterations, in the 

‘diversity’ and ‘genetic progress’ panels, for leaf appearance rate (LAR), duration of the vegetative 

phase, rh
PAD

 trait, LER and gsmax trait, respectively. b, d, f & h, Comparison of observed mean 

genotypic values and predicted values in an independent dataset of elite recent hybrids, with model 

calibration made using dataset of a, c, e & g, respectively. In a, c, e, g & i, purple empty circles, 

diversity panel; red and yellow empty circles, genetic progress panel, hybrids released before 1980 

and 2000, respectively ; green empty circles, hybrids released after 2000. In b, d, f & h, light blue 

circles, mid-early hybrids (G2), dark blue squares, intermediate hybrids (G3), red triangles, mid-late 

hybrids (G4). In a, r = 0.53, n= 302, p-value < 2.2E-16, CV
RMSE 

= 5.4%. In b, r = 0.11, n= 50, p-

value = 0.45, CV
RMSE 

= 4.1%. In c, r = 0.72, n= 302, p-value < 2.2E-16, CV
RMSE 

= 3.4%. In d, r = 

0.11, n= 60, p-value = 0.39, CV
RMSE 

= 4.2%. In e, r = 0.58, n= 302, p-value < 2.2E-16, CV
RMSE 

= 

10%. In f, r = -0.21, n= 20, p-value = 0.37, CV
RMSE 

= 15.7%. In g, r = 0.61, n= 302, p-value < 2.2E-

16, CV
RMSE 

= 11%. In h, r = 0.25, n= 20, p-value = 0.28, CV
RMSE 

= 12%. In i, r = 0.41, n= 302, p-

value = 1.3E-13, CV
RMSE 

= 9%.   

This figure is continued below. 
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Supplementary Fig. 6 (continued). The prediction of traits via a PC-BLUP model was less 

accurate than that with G-BLUP models in Fig. 1cd, 2cd, 3ef, 5b and 7ab for cross-validations 

(a, c, e, g, i), and lost accuracy for external validation (b, d, f, h). a, c, e, g & i, Comparison of 

observed mean genotypic values and mean predicted values in a 5-fold CV scheme with 10 

iterations, in the ‘diversity’ and ‘genetic progress’ panels, for leaf appearance rate (LAR), duration 

of the vegetative phase, rh
PAD

 trait, LER and gsmax trait, respectively. b, d, f & h, Comparison of 

observed mean genotypic values and predicted values in an independent dataset of elite recent 

hybrids, with model calibration made using dataset of a, c, e & g, respectively. In a, c, e, g & i, 

purple empty circles, diversity panel; red and yellow empty circles, genetic progress panel, hybrids 

released before 1980 and 2000, respectively ; green empty circles, hybrids released after 2000. In 

b, d, f & h, light blue circles, mid-early hybrids (G2), dark blue squares, intermediate hybrids (G3), 

red triangles, mid-late hybrids (G4). In a, r = 0.53, n= 302, p-value < 2.2E-16, CV
RMSE 

= 5.4%. In b, 

r = 0.11, n= 50, p-value = 0.45, CV
RMSE 

= 4.1%. In c, r = 0.72, n= 302, p-value < 2.2E-16, CV
RMSE 

= 

3.4%. In d, r = 0.11, n= 60, p-value = 0.39, CV
RMSE 

= 4.2%. In e, r = 0.58, n= 302, p-value < 2.2E-

16, CV
RMSE 

= 10%. In f, r = -0.21, n= 20, p-value = 0.37, CV
RMSE 

= 15.7%. In g, r = 0.61, n= 302, p-

value < 2.2E-16, CV
RMSE 

= 11%. In h, r = 0.25, n= 20, p-value = 0.28, CV
RMSE 

= 12%. In i, r = 0.41, 

n= 302, p-value = 1.3E-13, CV
RMSE 

= 9%.   
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Supplementary Data 1. Hybrids of the 'recent hybrids' panel and experiments in which 
each of them was evaluated.  

Field 1, Matzenheim. Field 2, St-Bonnet-de-Mure. Field 3, Binas. Field 4, Pusignan. Indoor 1, 

PhenoArch (Montpellier). See supplementary table 3 for more detail on experiments. 
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Supplementary Data 1 (continued). Hybrids of the 'recent hybrids' panel and experiments 

in which each of them was evaluated.  

Field 1, Matzenheim. Field 2, St-Bonnet-de-Mure. Field 3, Binas. Field 4, Pusignan. Indoor 1, 

PhenoArch (Montpellier). See supplementary table 3 for more detail on experiments. 
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CHAPTER 2 : ACQUISITION AND ANALYSIS OF EXTENDED 

FIELD DATA IN CONTRASTING ENVIRONMENTAL 

CONDITIONS FOR CROP MODEL SIMULATION ON A SET OF 
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Introduction 

In this chapter, we analysed the dataset collected in a multi-site field experiment for the 

recent hybrids panel, that will allow us later (chapter 3) to test the consistency of a predictive 

approach for modelling the genotypic variability of leaf area index (LAI) and grain number 

(GN). We used the data collected in the European project INVITE (https://www.h2020-

invite.eu/), which consisted of 33 experiments, defined as combinations of site x year x 

watering regime, distributed on a west–east transect for temperature and evaporative 

demand across Europe. A subset of the ‘recent hybrids’ panel including 30 varieties 

(Supplementary Table 1) was evaluated in this extended network, for LAI estimated from UAV 

imaging data in 7 experiments, and for yield and its components in 32 experiments 

(Supplementary Table 2).   

We characterized the environmental conditions experienced by plants in each field based on 

weather and soil water sensors. We first calculated environmental indices during vegetative, 

flowering and grain filling phases for a reference hybrid (Millet et al., 2019). We then clustered 

experiments into five environmental scenarios (Millet et al., 2016) that were used to 

investigate GEI (genotype-by-environment interaction) variation for grain yield (Y). Finally, we 

tested the representativeness of tested fields for yield and environment conditions based on 

a previous simulation study (Parent et al., 2018) performed over 36 years (1975–2010) in 59 

locations representative of the European maize growing area and of typical soil types of these 

regions.  

Regarding model parametrization, we first estimated a genotype-dependent parameter used 

in Sirius-maize, namely the maximum grain number per plant of each studied hybrid. This was 

estimated in the multi-site experiment by considering grain number in experiments with the 

highest yield. We also estimated LAI for each hybrid in contrasting experiments in order to 

test the model across environments. It was calculated via drone imaging and inversion of the 

PROSAIL model in the studied fields and will be compared in chapter 3 to those simulated by 

the crop model. Finally, we estimated genotypic sensitivities of grain number to mean soil 

water potential and mean daily maximum temperatures during the flowering phase using a 

linear regression model. 

 

https://www.h2020-invite.eu/
https://www.h2020-invite.eu/


CHAPTER 2 

58 
 

Results and discussion 

The distribution of environmental conditions and yield in studied experiments was typical 

of maize growing area in Europe.  

The network of field experiment targeted the range of latitudes 43–51°N which covers a large 

proportion of the maize growing area in Europe (Fig. 1a, Parent et al., 2018), and corresponds 

to the set of 30 commercial hybrids maturity classes (mid-early (FAO 280) to mid-late (FAO 

480)). Minimum and maximum temperatures during the flowering phase covered the range 

of temperatures observed for the European maize growing area over the last 36 years (e.g., 

maximum temperatures ‘maxT_flo’ = 22–34 °C in our experiments vs 24–31 °C for the 59 × 36 

studied records in European sites, Fig. 1cd). They tended to be higher, in average, than those 

measured at the same latitudes in the last 36 years probably a consequence of climate change. 

Mean soil water potential during the flowering phase ‘Psi_flo’ ranged from -0.27 to -0.02 MPa 

for the reference hybrid (ARV18), representing the range of available water in most 

agricultural soils as estimated using the equations of van Genuchten (1980). Hence, the recent 

hybrids panel was studied here in a range of climatic conditions that essentially covered both 

the current and past climatic conditions in the European maize growing area.  
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Fig. 1 : The field experiments covered the latitudes of the maize growing area in Europe, and 

represented a large part of the variability of yield and environmental conditions. a, Map of field 

experiments, blue and red circles for irrigated and rainfed experiments, respectively, and black dots 

for 59 sites distributed over Europe for representation of the maize growing area. b-d, Mean yield, 

mean daily minimum and maximum temperatures during the flowering phase as a function of latitude 

compared with means for 59 sites over 36 years. e, Three temperature scenarios captured a large part 

of the variability of temperature in the field experiments. Time courses of air temperature in the 

scenarios cool, warm, and hot. Each line represents one experiment; black lines, mean time course. f, 

Time courses of soil water potential for fields classified as belonging to well-watered (WW) or water 

deficit (WD) scenarios. Each line represents one experiment. In e and f, time is centered on flowering 

time, in equivalent days at 20 °C. n, number of experiments x maturity group. 

Yield, grain number per square meter and individual grain weight (weight at 15% moisture 

content) are presented in Figure 2a, 2b and 2c, respectively, for all experiments. The mean 

broad-sense heritability observed per experiment was 0.68, 0.78 and 0.83 for yield, grain 

number and grain weight, respectively. Unsurprisingly, we observed a high correlation 

between yield and its components (r=0.86 with grain number and 0.60 with individual grain 

weight, p-value < 2.2e-16). The correlation between grain number and grain weight was 

expectedly low (r=0.12, p-value=0.001) in spite of the trade-off between them (Fig. 5a-c, Turc 

& Tardieu, 2018; Fernández et al., 2022). Mean yields in the 32 studied experiments (3–16 

t.ha−1) covered the range simulated over 36 years (1975–2010) in 59 sites in Europe, with a 

tendency towards higher yields in experimental than in historical yields (3–12 t.ha−1, latitudes 
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41–53°N, Parent et al., 2018, Fig. 1b). This may be due to the cumulated genetic gain for the 

tested varieties, released from 2009 to 2020 in relation to the hybrid B73 x UH007 simulated 

in Fig 1 (0.1 t.ha−1.year−1 genetic gain in Welcker et al., 2022).  

 

Fig. 2 : Grain yield (a, d) and its components (b, grain number; c, individual weight grain x1000) in 

the 32 harvested field experiments in 2021 and 2022. d, Grain yield in each environmental scenarios 

identified in Fig. 1. Boxes represent the genotypic variability in each experiment or each scenario (25%, 

50% and 75% quantiles). In a, b and c, light blue and pink circles for irrigated and rainfed experiments, 

respectively. 

 

a b 

c d 
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Five environmental scenarios, based on temperature and soil water status, synthesized 

environmental conditions and accounted for yield variations across experiments. 

To further characterize the environmental conditions sensed by hybrids in each field, we 

focused on the three phenological phases (vegetative, flowering and grain filling phase) used 

by Millet et al., (2019), based on the progression of leaf number and maturity for each hybrid 

(Fig. 3ab). We calculated 36 environmental indices per phenological phase including air 

temperature, soil water potential, light, air VPD, ET0 and rainfall. We then identified two main 

environmental drivers using a stepwise regression: mean soil water potential (Psi_flo) and 

mean of daily maximum temperatures (maxT_flo) during flowering phase. These were among 

the predictors in the best regression model for yield with ten explanatory variables (R2=0.65).  

 

Fig. 3 : The calculation of phenological phases used to estimate environmental indices in a given 

experiment. a, The final leaf number (FLN, leaf number per plant at flowering), was estimated as 

genotypic BLUEs values over three experiments (Bin22W, Mat22W and Pus22W). b, The crop cycle was 

split into three phases based on the FLN of each hybrid, leaf appearance rate and maturity (Millet et 

al. 2019). These phases were separated by floral transition, silk initiation, end of grain abortion and 

grain maturity. They occurred at different thermal times for each hybrid. 

Experiments were then clustered based on these two indices, calculated for the reference 

hybrid (ARV18). Five environmental scenarios were identified (Fig. 1ef, Fig. 2d): Warm Well-

watered (mean yield=13.3 t.ha−1), Cool Well-watered (mean yield=12.4 t.ha−1), Hot Well-

watered (mean yield=11.7 t.ha−1), Warm Water-deficit (mean yield=8.7 t.ha−1) and Hot Water-

deficit (mean yield=7.1 t.ha−1). The genotype by environmental scenario interaction 

represented 35% of the total genotypic variation for grain yield. 

a 
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We further investigated the GEI in the multi-site experiment using a linear model, where grain 

number was fitted as a response to Psi_flo and maxT_flo during the flowering phase (see 

Methods). Overall, an appreciable variability was observed for the genotype-dependent 

sensitivities to the two environmental indices: from −4576 to 3418 grains m−2 MPa−1 for β1 

(Fig. 4a) and from −99 to 86 grains m−2 °C−1 for β2 (Fig. 4b). For example, a decrease in Psi_flo 

by 0.15 MPa decreased grain number by 8 to 31% for the least and most sensitive hybrids, 

respectively; and an increase in maxT_flo by 6 °C decreased grain number by 1 to 21% for the 

least and most sensitive hybrids, respectively. These ranges were expectedly lower than those 

observed in the maize diversity panel of Millet et al. (2019). They may represent genetic 

parameters for selecting new hybrids in a breeding context.  

 
 

Fig. 4 : Variability of genotype-specific response of grain number to environmental indices. a, Grain 

number as a function of soil water potential averaged during the flowering phase. x-axis in reverse 

order. b, Grain number as a function of daily maximum temperatures averaged during the flowering 

phase. For better legibility in a and b, only ten hybrids with different responses are shown, one line 

per hybrid. The variability of sensitivities from the factorial regression model (equation (3) in methods) 

across the whole panel is shown in histograms.  

 

 

 

- 
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Estimation of leaf area index and of maximum grain number per plants, to be used to test 

simulation in Chapter 3  

The genotypic maximum grain number per plant (GNmax), is an important genotypic parameter 

for simulating grain yield in the Sirius maize crop model used in chapter 3. It was calculated as 

BLUEs values over five high-potential experiments (Gle22D, Cra21W, Mat22W, Bin22W and 

Cha22D) after correcting for field plant density (Fig. 5a-d). GNmax values ranged from 422 to 

590 grains plant-1 among studied hybrids. The overall differences between the three maturity 

classes of hybrids were low (Fig. 5d). This could be due to the fact that irrigation was managed 

based on phenological stages of one reference intermediate hybrid (ARV18) in irrigated 

experiments, so irrigation dates were not optimised by maturity group. This penalized latest 

genotypes, expected to have highest GNmax otherwise. Furthermore, the standard maturity 

classification considered for hybrids was determined according to the duration of the whole 

crop cycle (until physiological maturity) and not according to the vegetative phase duration.  

Fig. 5 : Maximum grain number per hybrid. a-c, Relationship between grain number per square meter 

and individual grain weight (x1000) for 3 different hybrids. d, GNmax was calculated after correcting for 

plant density as BLUEs values over five high-potential experiments having the greatest number of 

common varieties : Gle22D, Cra21W, Mat22W, Bin22W and Cha22D. In a, b and c, light blue and pink 

circles for irrigated and rainfed experiments, respectively. In d, different colors for different maturity 

groups. 

a b 

c d 
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Leaf area index (LAI) is a key trait for light interception and transpiration, which largely differs 

between fields in relation to environmental conditions and plant density (Garriques et al., 

2008). We estimated it in this chapter and these estimated values will be compared with 

simulated values later in chapter 3. LAI was estimated using UAV images, which were analysed 

by inversion of the PROSAIL radiative transfer model (Casa et al., 2010; Duan et al., 2014; 

Supplementary Fig. 1). UAV flights were performed three to seven times during the period 

from plant emergence to flowering in 7 experiments out of the total of 33 field experiments: 

Mau22W, Mau22D, Ouz22W, Ouz22D, Pus22W, Pus22D and Pus21W (Supplementary Table 

2). The broad-sense heritability within experiment and per flying date ranged from 0.20 to 

0.90. This could be due to the fact that UAV imaging derived traits are very sensitive to crop 

phenological stage and weather conditions during flights (Blancon et al., 2019; Zhu et al., 

2022). The most relevant and regularly heritable LAI corresponded to flights performed 

towards the end of the vegetative phase (16-17 leaf stage). They ranged from 0.86 to 4.21, 

with high overall variability between irrigated and rainfed conditions (Fig. 6), and were 

appreciably correlated with grain yield (r=0.43, p-value=9E-10). 

 

Fig. 6 : Leaf area index (LAI) in the 7 field experiments, measured via UAV flights. Boxes represents 

the genotypic variability in each experiment (25%, 50% and 75% quantiles). LAI was calculated by 

inversion of the PROSAIL model (Casa et al., 2010; Berger et al., 2018, Supplementary Fig. 1), based on 

the multispectral images of the 7 experiments UAV flights (16-17 leaf stage). Light blue and pink circles 

for irrigated and rainfed experiments, respectively. 
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Material and methods, in addition to that in Chapter 1 

Genetic material. A subset of the ‘recent hybrids’ panel presented in chapter 1 was designed 

in the framework of the European project INVITE (https://www.h2020-invite.eu/) and was 

extensively evaluated in a multi-site field network across Europe. It included 30 commercial 

hybrids released from 2009 to 2020, belonging to mid-early (G2), intermediate (G3) or mid-

late (G4) maturity class in France (Supplementary Table 1).  

Field experiments. In addition to the 4 field experiments presented in chapter 1 for the 

“recent hybrids” panel, 29 additional experiments (defined as combinations of site x year x 

watering regime) were carried out in 2021 and 2022, under irrigated or rainfed conditions 

(Supplementary Table 2). Experiments followed an alpha-lattice design or a randomised 

complete block design and some of them were split by varieties maturity classes 

(Supplementary Table 2), each with two or three replicates of four-row plots, 6 m long. The 

targeted plant density was 8 or 9 plants m−2.  

In all experiments and hybrids, anthesis and silking dates were scored by visiting experiments 

every third day. Plots were mechanically harvested, then grain yield was scaled to 15% 

moisture content after estimation of grain moisture at harvest. 1000 grains weight was 

measured and used to calculate grain number per square meter from grain yield. One 

experiment (Pus21W) could not be harvested due to a storm that damaged plants around the 

flowering stage. The number of appeared leaves was scored on ten plants every week from 

plant emergence to flowering, for one reference hybrid per maturity class in all experiments, 

and for all hybrids in three experiments (Bin22W (Field 3), Mat22W (Field 1) and Mau22W, 

Supplementary Table 2). Leaf appearance rate (LAR) was calculated as the slope of the linear 

relationship between the number of visible leaves and thermal time (Parent et al., 2010), 

during the period from plant emergence to the 12-leaf stage. Final leaf number (FLN) 

corresponded to the total leaf number per plant at flowering. 

UAV (drone) flights with a DJI multispectral camera were performed three to seven times 

during the period from plant emergence to flowering in 7 out of the 33 field experiments : 

Mau22W and Mau22D in the DiaPHEN INRAE platform; Ouz22W and Ouz22D in the Phenofield 

ARVALIS platform (Beauchêne et al., 2019); Pus22W, Pus22D (Field 2) and Pus21W (Field 4) in 

Pusignan ARVALIS station (Supplementary Table 2). An automatic image-processing pipeline 

https://www.h2020-invite.eu/
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was applied by Hiphen, Avignon, France (http://www.hiphen-plant.com), following methods 

presented in (Blancon et al., 2019). In addition to ALA trait (Average Leaf inclination Angle to 

the soil level) presented in chapter 1, leaf area index (LAI) was calculated by inversion of the 

PROSAIL model (Casa et al., 2010; Duan et al., 2014; Berger et al., 2018) (Supplementary Fig. 

1, Supplementary Table 3), based on the multispectral images of the 7 experiments UAV 

flights.  

Environmental variables were recorded daily in all experiments, including light, air 

temperature, relative humidity (RH), rainfall and wind speed. Meteorological data for some 

experiments were obtained from the AGRI4CAST database of the JRC (Joint Research Centre) 

or the INRAE CLIMATIK database. Soil water potential was measured every day with 

tensiometers at 30 and 60 cm depths with three or two replicates, located in plots sown with 

a common reference hybrid (ARV18). Soil data (physical and chemical properties) were 

obtained from the JRC European Soil Commission database and from the FAO Harmonized 

World Soil database. 

Yield and environmental conditions in Europe. We tested the representativeness of the field 

experiments presented here,  compared to the information collected over 36 years in 59 

locations representative of the European maize growing area and of typical soil types of these 

regions (Parent et al., 2018). Briefly, soil data were obtained from the JRC European Soil 

Commission database and from the Crop Growth Monitoring System. Meteorological data 

represented 36 years of daily weather (1975–2010) obtained from the AGRI4CAST database 

of the JRC or the INRAE CLIMATIK databases. Yields presented in Fig. 1 are mean values 

simulated over the 59 × 36 x 2 combinations of location, year and watering regime (Parent et 

al., 2018). For that, a modified version of the APSIM model was used (Hammer et al., 2010), 

parametrized for the B73×UH007 hybrid (Lacube et al., 2020). 

Field traits Analyses. Genotypic values (BLUEs) for each trait in each field experiment were 

estimated by correcting raw traits values for spatial effects, by fitting a mixed model (R 

package SpATS, van Eeuwijk et al., 2019), with a fixed term for genotype and random effects 

for rows and columns as well as a smooth surface defined on row and column coordinates. 

Broad-sense heritabilities were calculated with the same R package, using the same model but 

with the genotype effect included as a random term. Regarding longitudinal traits (LAI), 

http://www.hiphen-plant.com/
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genotypic values at individual time points, t, were obtained from their smoothed time series 

using a generalized additive model fitted to the spatially adjusted daily measurements, 𝑦̃𝑖,𝑘(𝑡), 

for each plant k of genotype i :  

𝑦̃𝑖,𝑘(𝑡) = 𝛼𝑖 + 𝑓𝑖(𝑡) + 𝜖𝑖,𝑘(𝑡),     𝜖𝑖,𝑘(𝑡) ~ 𝑁(0, 𝜎2)                  (1) 

 where αi is a genotype-specific intercept, fi (t) is a genotype-specific thin plate regression 

spline function on time, and ϵi,k (t) is a random error term (R package statgenHTP, Millet & al., 

2022; Pérez-Valencia et al., 2022).  

The genotypic maximum grain number per plant (GNmax) was calculated after considering field 

plant density as GN BLUEs values over five high-potential experiments having the greatest 

number of common varieties : Gle22D, Cra21W, Mat22W, Bin22W and Cha22D. 

Environmental characterization and multi-environment analyses. To characterize the above 

field experiments, we first defined three phenological phases (Millet et al., 2019) (Fig. 3). First, 

the vegetative phase corresponded to the thermal time period between floral transition (leaf 

number=(FLN/2)-1), where FLN is final leaf number, and silk initiation (leaf number= FLN−2). 

Second, the flowering phase elapsed from silk initiation to the end of grain abortion (14 days 

at 20 °C after silking). Third, the grain-filling phase elapsed from the end of abortion to 

physiological maturity defined as the date at which grain water content decreases to 0.32 g 

g−1 matter. 36 environmental indices per phenological phase were then calculated with 

experiments environmental data including air temperature, soil water potential, light, air VPD, 

ET0 and rainfall (Millet et al., 2016, 2019).  

To identify the most important environmental sources of yield variation in the multi-site 

experiment, an ANOVA-based stepwise regression was performed with the latter indices and 

variety factor as predictors of yield, using the R package ‘olsrr’ (Franke, 2010; Hebbali, 2020). 

Mean soil water potential at 60 cm depth (Psi_flo) and mean of daily maximum temperatures 

(maxT_flo) during the flowering phase for the reference hybrid (ARV18) were used to cluster 

field experiments into five environmental scenarios (Millet et al., 2016). The three 

temperature scenarios were : cool (maxT_flo < 27°C), warm (27°C ≤ maxT_flo < 30°C) and hot 

(maxT_flo ≥ 30°C). Soil water conditions resulted in two scenarios : well-watered ‘WW’ (Psi_flo 

> −99 kPa) and water-deficit ‘WD’ (Psi_flo ≤ −99 kPa).   
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To investigate GEI (genotype-by-environment interaction) variation for grain yield (Y) across 

the experiments grouped into environmental scenarios, we fitted a linear model using the R 

package ‘stats’ :  

𝑌 = 𝜇 +  𝐺 + 𝑆𝑐𝑒𝑛 + 𝐺 × 𝑆𝑐𝑒𝑛 + 𝐸𝑥𝑝 × 𝑆𝑐𝑒𝑛 + 𝜀                  (2) 

where µ is the intercept, G is a genotypic main fixed effect, Scen is an environmental scenario 

main fixed effect, G x Scen is an interaction term fixed effect between genotype and 

environment scenario, Exp x Scen is a fixed effect representing ‘experiments within scenarios’ 

design and ε is a residual effect. 

Finally, we estimated genotypic sensitivities of grain number (GN) to environmental drivers 

identified above during the flowering phase (Psi_flo and maxT_flo). These sensitivities 

corresponded to regression coefficients obtained after fitting the following linear model : 

𝐺𝑁𝑖,𝑗 = 𝜇 + 𝑔𝑖 + 𝑃𝑠𝑖_𝑓𝑙𝑜𝑗 + 𝑚𝑎𝑥𝑇_𝑓𝑙𝑜𝑗 + 𝛽1,𝑖 × 𝑃𝑠𝑖_𝑓𝑙𝑜𝑖,𝑗 + 𝛽2,𝑖 × 𝑚𝑎𝑥𝑇_𝑓𝑙𝑜𝑖,𝑗 + 𝜀𝑖,𝑗  (3) 

where μ is the intercept, 𝑔𝑖 is a genotypic main fixed effect, 𝑃𝑠𝑖_𝑓𝑙𝑜𝑗 and 𝑚𝑎𝑥𝑇_𝑓𝑙𝑜𝑗 are 

environmental main effects and 𝜀𝑖,𝑗 is a residual effect; β1,i and β2,i are the genotype-

dependent sensitivities to environmental indices Psi_flo and maxT_flo, respectively, sensed 

by the ith hybrid in the jth experiment. 
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Supplementary table 1. Varieties of the recent hybrids panel, including INVITE 

subset, and number of field experiments in which they were evaluated. 
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Supplementary Table 1 (continued). Varieties of the recent hybrids panel, including 

INVITE subset, and number of field experiments in which they were evaluated. 
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Supplementary Table 2. Field experiments performed for the entire recent hybrids 

panel or a subset of it. 

Name exp., Experiment name used in the text; Year, year when the experiment was done. 
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Name exp., Experiment name used in the text; Year, year when the experiment was done. 

Supplementary Table 2 (continued). Field experiments performed for the entire 
recent hybrids panel or a subset of it. 

Name exp., Experiment name used in the text; Year, year when the experiment was done. 
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Supplementary Table. 3 : Overview of the input parameters of the PROSAIL model, 

with symbols, units and typical variable ranges published in the literature for five different 

crops that have been analyzed most often by the studies (Berger et al. 2018).   

* characterizes an ellipsoidal leaf inclination model; ** spherical, planophile, erectophile, uniform, 
extremophile or plagiophile types. LIDF is characterized by LIDFa, which controls the average leaf 
slope and LIDFb which controls the distribution’s bimodality; *** to be multiplied with single ρsoil 
spectrum; **** scaling factor between the two model implemented ρsoil spectra (wet versus dry). 

Supplementary Fig. 1 : Calculation of canopy reflectance using the coupled PROSPECT 

+ SAIL models. PROSAIL combines the leaf optical properties model PROSPECT with the 

turbid medium canopy radiative transfer model SAIL. The models are coupled so that the 

simulated leaf reflectance and transmittance from PROSPECT are fed into the SAIL model, 

completed with information about soil optical properties and illumination/observation geometry 

(Berger et al. 2018). Variable symbols are explained in Supplementary Table 3.    
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CHAPTER 3 : SIMULATING LEAF AREA INDEX AND GRAIN 

NUMBER FOR PANELS OF MAIZE HYBRIDS IN CONTRASTING 

ENVIRONMENTAL CONDITIONS  

 

This chapter presents the current status of this work, which will still be fine-tuned before 

submission to a journal, in particular: 

 
• Modelling individual grain weight and grain yield, in addition to leaf area index and grain 

number presented here 

• Optimising the set of genotype-dependent parameters provided to the crop model and 

their calculations 

• Validating the model using more experiments and genotypes  
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Introduction  

In this chapter, we tested the consistency of our predictive approach, which aimed at 

simulating the performance of hundreds of genotypes via a combination of phenomics, 

genomic prediction and crop modelling. The specificity of this chapter is to perform 

simulations based on a crop model whose genotype-dependent parameters originate from 

traits presented in previous chapters. However, due to time constraints, our study was limited 

here to the first part of the crop cycle, with the predictions of leaf area index (LAI) and grain 

number (GN) for tens of varieties in contrasting environmental conditions. Simulations were 

based on a set of traits, transformed into model parameters, related to (i) plant phenology 

(leaf appearance rate ‘LAR’ and final plant leaf number ‘FLN’), (ii) plant architecture (rhPAD), 

(iii) leaf growth (max leaf expansion rate ‘LER’) and (iv) plant responses to environmental 

conditions (stomatal conductance gsmax, LER sensitivities to VPD and SWP, Table 1). We also 

estimated the genotype-dependent maximum plant grain number (GNmax) based on the 

dataset presented in Chapter 2. As tested in Chapter 1, the genotypic values of these traits 

can be estimated via statistical prediction models based on genomic information only. 

We used for that the process-based crop model Sirius Maize, which simulates the phenology, 

the growth and the development of maize plants from sowing to physiological maturity, along 

with the fluxes of water, nitrogen and carbon in the soil-plant-atmosphere continuum in 

response to environmental conditions and crop management. Its input data are crop 

management practices (sowing date, planting density, irrigation dates and amounts, soil 

fertilisation dates and amounts), micro-meteorological daily data (min and max air 

temperatures, global radiation, rainfall and air relative humidity) and soil main characteristics 

of the target simulated field (soil depth; soil water lower, drained upper and saturated limits; 

soil bulk density and soil organic N content), provided to the model via a specific interface. 

Genotype-dependent parameters are also provided to the model via an interface. Sirius Maize 

derives from SiriusQuality2 originally developed for small grain cereals (Jamieson et al., 1998; 

Martre et al., 2006; Supplementary Fig. 1), but was recently extended to maize. For that, the 

LEPSE group, in collaboration with Limagrain, adapted original algorithms, used modules 

developed by Lacube et al. (2020) for the model APSIM (Hammer et al., 2010) and re-

developed the code with the software framework BioMA. The Sirius graphical interface 

provides tools for complex multi-runs and for parameter optimization.  
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Table 1 : Summary of measured traits used for estimating genotype-dependent 

parameters of Sirius Maize. 

Fig. 1 : Correlation heat map for estimated genotype-dependent parameters for the genetic 

progress panel. Statistically significant correlations are shown with an asterisk.  
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Approach used in the Chapter 

Genotype-dependent parameters.  

A set of 13 genotype-dependent parameters that serve to run Sirius maize calculations was 

derived from the datasets presented in Chapters 1 and 2 (Table 1, Fig. 1, Supplementary Table 

1). All parameters not described here were considered as common to all studied genotypes 

(Lacube et al. 2020).  

- Some of these parameters directly derived from measured traits: (i)  Nfinal, the plant leaf 

number at flowering time (a trait highly correlated to anthesis date, Parent et al., 2018; 

Castelletti et al., 2020), (ii) GNmax, the grain number per plant calculated by considering grain 

number in fields with best environmental conditions, (iii) LERb, the slope of the linear 

regression between leaf elongation rate and VPD, estimated in indoor experiments with a 

time definition of one hour, (iv) LERc, the slope of the linear regression between leaf 

elongation rate and SWP, estimated in indoor experiments with a time definition of one day 

(Welcker et al., 2011; Chapuis et al., 2012).  

- Other parameters were extracted from traits by using simple equations. Together with traits 

presented above (Nfinal, LERb, LERc), they are used by Sirius Maize to calculate leaf area index 

(LAI). These parameters are: (i) the genotype-dependent thermal time between the emission 

and ligulation of two consecutive leaves (phyllochron ‘phyltip’ and ligulochron ‘all1’, 

respectively), (ii) genotype-dependent parameters describing the beginning and end of these 

processes and the shape of their relation to thermal time (btip, bll1, αtr and stopLigul), (iii) the 

elongation rate of leaf 6 (LERa), from which the model calculates that of all other leaves. The 

calculation of these parameters (LERa, phyltip, btip, all1, bll1, αtr and stopLigul) is detailed in the 

methods section. 

- Finally, two genotype-dependent parameters (kl and LUE) were extracted from traits that 

are related to them, but cannot be calculated via deterministic equations. These parameters 

were scaled to the corresponding traits (see Methods). They are used in the model for the 

Monteith approach of transformation of incident light into biomass :  

∆Biomass (0, t)  = ∫  L x RIE x LUE  dt  
𝑡

0
         (1)   

Where ∆Biomass (0,t) is the accumulation of biomass from times 0 to t, L is the incident light 

with a time definition (dt) of one day, RIE (radiation interception efficiency) is the ratio of 



CHAPTER 3 

82 
 

intercepted to incident light, with the same time definition, and LUE (light use efficiency) is 

the ratio of biomass accumulation to intercepted light, with the same time definition.  

The first parameter used by Sirius Maize is the light extinction coefficient, kl, which affects the 

shape of the relationship between LAI and RIE.  

RIE = 1 – e- kl x LAI                                      (2) 

It was scaled to rhPAD plant architecture trait, which largely affects RIE (Perez et al., 2019). 

Notably, the most recent version of Sirius Wheat (SiriusQuality3) directly involves ALA, as 

defined in Chapter 1, so the scaling procedure used here will not be necessary any more. This 

version is not yet implemented in Sirius Maize but will be in the next months.  

The second parameter was LUEpre (pre-anthesis LUE), which was scaled to the plant stomatal 

conductance (gsmax, presented in Chapter 1). Indeed, LUE is a direct consequence of the ability 

of the canopy to photosynthesize, itself related to canopy stomatal conductance (Motzo et 

al., 2013; Wang et al., 2022).  

Use of the genotypic parameters by Sirius Maize. 

Leaf area index was modelled as in Lacube et al. (2020), as a result of processes related to 

plant development and leaf elongation and widening (Supplementary Table 1). The areas of 

the leaves of each rank on the stem were calculated daily based on the genotype-dependent 

parameters presented above (see Methods). Importantly, elongation rate of any growing leaf 

rank was calculated from that of leaf 6 (LERa), leading to a profile of leaf elongation rates, on 

which the effects of evaporative demand (VPD) and soil water potential (SWP) were applied 

by taking into account the corresponding genotype-dependent sensitivities (LERb and LERc, 

respectively). This follows studies showing that leaf elongation rate is primarily impacted by 

VPD and SWP (Welcker et al. 2011; Lacube et al. 2017).  

Grain number was modelled by taking into account the mean daily plant growth rate in 

biomass (PGR, g.d-1.plant-1), estimated during the period from 13 d20°C before silking to 22 d20°C 

after it. Indeed, it was shown that straightforward relations are observed between the PGR 

around flowering time and the grain number per plant (Messina et al., 2019; Larrosa & Borrás, 

2022; Supplementary Fig. 2). Grain number was calculated as a logarithmic function of PGR, 

taking into account the genotype-dependent parameter GNmax, whereas the parameters 
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affecting the shape of this function were considered as common to all studied genotypes 

(PGRbase and GNk, see methods).  

Test of the relevance of simulation results. 

A first test was performed, where all indoor platform traits used for deriving genotypic 

parameters were measured for all hybrids (Table 1), based on the BLUEs resulting from four 

indoor experiments. It was performed on the dataset collected in the genetic progress study 

(Welcker et al., 2022). This is a near-ideal case for best accuracy, so this first test can be 

considered as the least stringent one. Indeed, the workload associated with this test is 

probably not applicable to potential future routine approaches. Simulations were run in 10 

field experiments, representing contrasting environmental scenarios for temperature and soil 

water status, including two experiments where LAI was derived from UAV imaging.  

A second test (performed on the recent hybrid panel) considered the case in which three 

traits/parameters were measured (LAR, FLN and GNmax), whereas all other traits were 

obtained via genomic prediction (rhPAD, gsmax, LERa, LERb and LERc). Simulations were 

performed in 17 field experiments, representing contrasting environmental conditions, 

including seven experiments where LAI was derived from UAV imaging.  

The last, most stringent test, was performed by using, in the model, the genomic prediction 

values of all traits/parameters. The latter were calculated from the cross-validation scheme 

(CV1) for the genetic progress panel and, for the recent hybrids panel, from the training sets 

collected with the diversity and genetic progress datasets (see Chapter 1). Simulations were 

run in the same experiments mentioned before. 

Finally, we tested the impact on LAI and GN simulation accuracies of Sirius parameters by 

running simulations for genetic progress panel in the same experiments as before, but with 

some parameters fixed to the mean value for all hybrids, while the other parameters were 

kept as genotype-dependent. 
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Results and discussion 

 

 

 

 

I) Simulation of leaf area index (LAI) 

Sirius Maize accounted for both the genotypic and environmental effects on LAI but with 

different accuracies depending on environmental scenarios and considered test. 

We first tested the model with the genetic progress dataset, in which all genotypic parameters 

derive from measurements (Table 1). Observed values of LAI were derived from UAV 

multispectral images at the end of vegetative phase. Tests were performed for two 

experiments with contrasting soil water status: MAU2017W (hot well-watered (WW) 

scenario) and MAU2017D (hot water-deficit (WD) scenario). The correlation between 

observed and simulated LAI values in the hot_WW experiment ‘MAU2017W’ was high (r=0.64) 

with a low relative estimation error (rrmse) of 14% (Fig. 2a, Table 2). The correlation decreased 

to r=0.40 in the hot_WD experiment ‘MAU2017D’, with a higher rrmse of 23%, likely due to 

an overestimation in LAI simulations here (Fig. 2a, Table 2).  

Table 2 : Summary of simulation results for LAI and grain number.  

# Pearson correlation coefficient (r) and relative RMSE (rrmse) values shown are mean values obtained within 

the experiments of each environmental scenario. WW, well-watered. WD, Water-deficit. 
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We then tested the model with the recent hybrids dataset, in which only some traits used for 

parameterization were measured (LAR and FLN) while the other genotype-dependent 

parameters were estimated via genomic prediction. LAI observed values were derived from 

UAV multispectral images at 16-17 leaf stage, in seven experiments with contrasting 

environmental conditions : Pus21W (cool_WW), Pus22W and Ouz22W (warm_WW), Mau22W 

(hot_WW), Pus22D and Ouz22D (warm_WD) and Mau22D (hot_WD). Correlations between 

LAI observed and simulated values ranged from r=0.40 with a low rrmse of 16% on average in 

well-watered conditions to r=0.31 with a moderate rrmse of 27% on average in water-deficit 

conditions (Fig. 3). 

The overall correlation between LAI observed and simulated values across experiments and 

environmental scenarios was appreciable in both panels: r=0.61 for genetic progress panel 

experiments (Supplementary Fig. 3a) and r=0.59 for recent hybrids panel experiments 

(Supplementary Fig. 4a).  

Fig. 2 : Simulated LAI for the genetic progress panel, with genotype-dependent parameters derived 

from measured traits (a, c, d) or genomic prediction (b). a, Simulation results with parameters all 

derived from measurements. b, Simulation results with parameters all derived from genomic prediction. 

c, Simulation results with phenology parameters (LAR, FLN) kept as genotype-dependent, and all other 

parameters fixed to the mean value of the panel. d, Simulation results with all parameters kept as 

genotype-dependent except leaf elongation rate (LERa), fixed to the mean value of the panel. 
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Fig. 3 : Simulated LAI for the recent hybrids panel with genotype-dependent parameters derived 

from measured traits for FLN and LAR, and from genomic prediction for the other parameters.  
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Altogether, Sirius Maize adequately accounted for genotypic effects variation on LAI in 

contrasting environmental scenarios, but accuracies were notably lower in water-deficit 

conditions. This was consistent with Bustos-Korts et al. (2019) findings for wheat yield 

predicted using a multi-trait model in contrasting environment types, where accuracies also 

significantly decreased in water-deficit conditions. This result can be explained either by lower 

consistency of estimated values for the traits linked to genotypic responses in water-deficit 

conditions, or by the well-known complexity of predicting genotype–environment interactions 

(GEIs) in water limitation conditions (Chenu et al., 2011). GEIs emerge in the case of crop 

models from the interconnections and feedback regulations between subsystem components 

and physiological processes of the model (Bertin et al., 2010). Regarding the recent hybrids 

panel, the expected lower accuracies found were likely due to the lower estimation quality of 

parameters predicted by genomic prediction, but also to the lower phenotypic variability in 

this panel as discussed in Chapter 1.  

LAI simulation accuracies remained nearly unchanged when parameters resulted from 

genomic prediction. 

The final test involved parameters estimated by genomic prediction only. For the genetic 

progress panel, traits genetic values used for parameterization were obtained from the 

genomic prediction cross-validation scheme CV1 of Chapter 1. The correlations between 

observed and simulated LAI values for the panel remained similar to those obtained when 

parameters derived from measurements (Fig. 2b, Table 2). This was the case in both well-

watered (r=0.63, rrmse=13%) and water-deficit conditions (r=0.41, rrmse=25%). These results 

can be explained by the fact that the traits (LAR, FLN) mainly affecting LAI genotypic variability 

in the panel were highly heritable (hg
2>0.60) and could be well predicted via genomic 

prediction G-BLUP models. 

When parameters used in genomic prediction involved different datasets for the training set 

(diversity and genetic progress panels) and prediction set (recent hybrids panel), correlations 

between LAI observed and simulated values for the latter panel also remained stable, probably 

for the same reasons as before (Fig. 4, Table 2). They ranged from r=0.39 with rrmse of 16% 

on average in well-watered conditions to r=0.30 with rrmse of 27% on average in water-deficit 

conditions. 
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Fig. 4 : Simulated LAI for the recent hybrids panel, with all genotype-dependent 

parameters estimated via genomic prediction.  
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The genotypic variability of LAI in contrasting environmental conditions depended on 

phenology and leaf elongation rate. 

We tested the impact on LAI simulation accuracies of some Sirius parameters by running 

simulations with some parameters fixed to the mean value for all hybrids, while the other 

genotype-dependent parameters were kept as they are. This was performed for the genetic 

progress panel in the same experiments as before.  

The first case involved keeping parameters linked to plant phenology (LAR, FLN) (Fig. 2c) as 

genotype-dependent, whereas all other parameters were set to the mean values of the panel 

for all genotypes. Here, correlations between LAI simulated and observed values were good 

in both well-watered (r=0.69, rrmse=13%) and water-deficit conditions (r=0.47, rrmse=23%). 

This is probably due to the fact that, in the genetic progress panel, the main driver of genotypic 

differences was the phenology (Welcker et al., 2022). The increase in accuracy compared to 

simulations where all genotypic parameters were varied between hybrids may be due to some 

inconsistency between the calculated traits values used for parameterization for few hybrids. 

The second case involved varying all genotypic parameters except leaf elongation rate ‘LERa’ 

(Fig. 2d). Here, correlations between LAI simulated and observed values decreased slightly in 

both well-watered (r=0.62) and water-deficit conditions (r=0.39).  

Overall, our results suggest that Sirius Maize has the potential for predicting LAI for a large set 

of genotypes in different environmental conditions. This may potentially result in a high-

throughput and low cost method for simulating LAI for hundreds of genotypes in hundreds of 

environments, if the required genotype-dependent parameters are either measured or 

predicted from genomic information. However, only some of the measured traits had an 

appreciable role for the studied panel, essentially those related to phenology, but also leaf 

elongation rate. 
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II) Simulation of grain number (GN) 

Sirius Maize accounted for both the genotypic and environmental effects on grain number 

per unit area. 

As for LAI, we first tested Sirius maize for the case where all genotype-dependent parameters 

derived from measurements, in the genetic progress panel (Table 1). Tests were performed 

for nine field experiments in six different sites and three years, with contrasting temperature 

and soil water status: LEM2017W and VEN2017W (cool_WW scenario); GAI2017W and 

NER2013W (warm_WW scenario); MAU2017W (hot_WW scenario); VEN2017D (cool_WD 

scenario); GAI2017D and LAV2017D (warm_WD scenario); MAU2010D (hot_WD scenario). We 

compared these observed values to those simulated by Sirius maize parameterized with traits 

measured indoor (LAR, FLN, rhPAD, gsmax, LER and its sensitivities to SWP and VPD) or in the 

field (GNmax) (Table 1). The correlations between observed and simulated grain number were 

high in all scenarios, ranging from r=0.79 to r=0.86 in well-watered conditions with low 

estimation error (rrmse=15% on average), and ranging from r=0.71 to r=0.87 in water-deficit 

conditions with a fluctuating estimation error (rrmse=23%  ̶47%) (Fig. 5, Table 2).  

We then tested the model with the recent hybrids dataset, in which only some genotype-

dependent parameters resulted from measured traits (LAR, FLN and GNmax), while the other 

parameters were estimated via genomic prediction. Simulation were run for twelve 

experiments from ten different sites and two years, presenting contrasting environmental 

scenarios : Cra21W and Mat22W (cool_WW); Bin22W, Pus22W and Chr21D (warm _WW), 

LMg22W and Cad22W (hot_WW), Pac22D, Chr22D and Ouz22D (warm_WD); LMg22D and 

Sek21D (hot_WD). (Fig. 6, Table 2). Correlation coefficients between observed and simulated 

values were moderate to high in well-watered conditions (r=0.31 ̶ 0.84) with low estimation 

errors (rrmse=5%  ̶19%), and low to moderate in water-deficit (r=0.11  ̶0.47) with higher and 

more variable estimation errors (rrmse=18%  ̶49%).  

The correlation between observed and simulated values across environmental scenarios was 

high for the genetic progress dataset (r=0.77, Supplementary Fig. 3b) and lower but still 

appreciable (r=0.56) for the recent hybrids dataset (Supplementary Fig. 4c).  
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Fig. 5 : Simulated grain number (GN) for the genetic progress panel, with all genotype-dependent 

parameters derived from measured traits. 
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Fig. 6 : Simulated grain number (GN) values for the recent hybrids panel with the genotype-dependent 

parameters FLN, LAR and GN
max

 derived from measured traits, and all other genotype dependent 

parameters estimated via genomic prediction. 
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Sirius maize therefore accounted for genotypic variations of grain number per unit area in 

contrasting environmental scenarios, even though accuracies decreased in water-deficit 

conditions compared to well-watered conditions as in the case of LAI. The genotypic effects 

and GEI effects on leaf growth and biomass accumulation therefore translated into differences 

in simulated grain number for the tested genotypes. Interestingly, these simulations, based 

on our process-based crop model, had similar accuracies as those achieved by other studies 

based either on another crop growth model (e.g. Toda et al., 2020) or on linear mixed models 

(e.g. Guo et al., 2020). These two studies for instance, found appreciable prediction 

accuracies, for genotypes tested in a multi-environment context, when they considered 

intermediate physiological traits in their modelling approaches for predicting rice biomass and 

wheat yield, respectively.  

GN Simulation accuracies decreased but remained appreciable when genotype-dependent 

parameters were predicted from genomic information. 

We have run here simulations in which all parameters were estimated by genomic prediction 

of related traits. The correlations between GN observed and simulated values decreased by 

10% on average for the genetic progress panel compared to those when simulations were run 

with genotype-dependent parameters derived from measurements (Fig. 7, Table 2). This was 

the case in both well-watered (r=0.68  ̶ 0.79, rrmse=12% ̶ 19%) and water-deficit conditions 

(r=0.63  ̶0.80, rrmse=22% ̶ 51%). These results can be explained by the fact that GNmax was well 

predicted via genomic prediction G-BLUP model (robs_pred=0.85). For comparison, studies using 

multi-trait or joint regression genomic prediction models for predicting yield showed similar 

prediction accuracies : in Bustos-Korts et al. (2019), r ranged from 0.50 to 0.80 depending on 

environment types; in Millet et al. (2019), r ranged from 0.43 to 0.85 depending on 

experiments. In Cooper et al. (2016) study with a maize GP-assisted CGM method close to our 

study approach, prediction accuracies ranged from 0.50 to 0.82 depending on prediction 

environments considered. 

When parameters genomic prediction involved the use of different datasets for training set 

(diversity and genetic progress panels) and prediction set (recent hybrids panel), correlations 

between observed and simulated values appreciably decreased (-34% on average, r=0.19  ̶

0.57) with an increase in estimation errors in well-watered conditions (rrmse=8%  ̶20%, Fig. 8, 

Table 2). A likely explanation is that GNmax predicted for recent hybrids was less accurate than 

in the case of a cross validation reported in the above paragraph (robs_pred=0.40).  
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Fig. 7 : Simulated grain number (GN) for the genetic progress panel, with all genotype-dependent 

parameters derived from genomic prediction. 

For water-deficit conditions though, correlations remained stable and did not get worse than 

the case where GNmax and phenology parameters derived from measurements (r=0.10  ̶0.50, 

rrmse=19%  ̶49%, Fig. 8).  

Finally, the overall correlation between observed and simulated values across environmental 

scenarios remained appreciable for both genetic progress panel experiments (r=0.75, 

Supplementary Fig. 3c) and recent hybrids panel experiments (r=0.51, Supplementary Fig. 4d).  
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Fig. 8 Simulated grain number (GN) for the recent hybrids panel, with all genotype-dependent 

parameters derived from genomic prediction. 
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The genotypic variability of GN in contrasting environmental conditions depended on the 

maximum grain number potential and leaf growth rate. 

We tested the impact on simulation accuracies of some parameters by running simulations 

for genetic progress panel after fixing certain parameters values.  

The first case involved varying all genotypic parameters except GNmax (Fig. 9, Supplementary 

Fig. 3d). Here, correlations between GN simulated and observed values drastically decreased 

(-50% on average) in both well-watered (r=0.32  ̶ 0.55, rrmse=17%  ̶ 25%) and water-deficit 

conditions (r=0.15 ̶ 0.63, rrmse=32%  ̶50%). This confirms the fact that, in the genetic progress 

panel, maximum grain number was one of the main drivers of the genetic variability of yield 

(Fig. 1; Welcker et al., 2022).  

The second case involved varying all genotypic parameters except leaf elongation rate ‘LERa’ 

(Fig. 10, Supplementary Fig. 3e). Here, correlations between simulated and observed values 

decreased to a much lesser extent than before, but estimation errors for some hybrids notably 

increased in some experiments (r=0.71 ̶ 0.88 and rrmse=14% ̶ 22% in well-watered conditions, 

r=0.62 ̶ 0.87 and rrmse=27% ̶ 47% in water-deficit conditions, Fig. 10). This illustrates the fact 

that simulated grain number is indirectly impacted by leaf growth variability through plant 

growth rate (PGR). 

Overall, as for LAI, our results suggest that Sirius Maize has the potential for predicting grain 

number yield component for a large set of genotypes in different environmental conditions. 

This may potentially result in high-throughput and low cost method for simulating grain yield 

for hundreds of genotypes in hundreds of environments. 
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Fig. 9 : Simulated grain number (GN) for the genetic progress panel, with all parameters kept as 

genotype-dependent, except the maximum grain number per plant, GN
max

, fixed to the mean 

value of the panel. 
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Fig. 10 : Simulated grain number (GN) for the genetic progress panel, with all parameters kept as 

genotype-dependent except leaf elongation rate (LERa), fixed to the mean value of the panel. 
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Methods  

Calculation of genotype-dependent parameters fed to Sirius Maize. 

Thirteen genotype-dependent parameters were considered in our study (Table 1) : phyltip, btip, 

all1, bll1, Nfinal, αtr, stopLigul, LERa, LERb, LERc, kl, LUEpre and GNmax.  

The genotype-dependent thermal time between the emission and ligulation of two 

consecutive leaves derived from LAR (phyllochron ‘phyltip’= 1/LAR and ligulochron ‘all1’= 1/LAR, 

respectively). The genotype-dependent parameters describing the beginning and end of these 

processes and the shape of their relation to thermal time were calculated as follows :                           

btip= phyltip x (-1.35)= intercept of the regression of thermal time with tip appearance ;                        

bll1= all1 – 10= intercept of the regression of thermal time with ligulation ; αtr= 3/Nfinal= 

transition between the two linear parts describing leaf ligulation with thermal time relative to 

Nfinal ; stopLigul= 3/Nfinal= fraction of Nfinal which stops growing and ligulates together). 

The elongation rate of leaf 6 (LERa) was derived from plant LER (max leaf expansion rate) 

measured in well-watered indoor experiments, with this empirical regression equation :       

LERa= LER  x 0.0147 + 4.87. LERb was estimated as the slope of the linear regression between 

leaf elongation rate and VPD in indoor experiments with a time definition of one hour. LERc 

was estimated as the slope of the linear regression between leaf elongation rate and SWP in 

indoor experiments with a time definition of one day. 

The parameter kl was scaled to rhPAD trait, by varying kl maize species reference value from 

one genotype to the other, by multiplying kl for each genotype by a coefficient equal to the 

ratio between the genotype rhPAD value and rhPAD mean value of the whole studied panel. 

LUEpre (pre-anthesis LUE) was scaled to plant max stomatal conductance trait (gsmax), by 

varying LUEpre maize reference value from one genotype to the other, by multiplying LUEpre 

for each genotype by a coefficient equal to the ratio between the genotype gsmax value and 

gsmax mean value of the whole studied panel. 

LAI modelling in Sirius Maize.  

Leaf area index was modelled as in Lacube et al. (2020), as a result of processes related to 

plant development and leaf elongation and widening. LAI is indeed calculated daily depending 

on the dimensions (width and length) of different leaf ranks, after estimating their exposed 
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fraction and considering plant density. Modelling the expansion of individual leaves requires 

identification of the dates at which leaf elongation and widening begin and end, for each leaf 

rank. The dates of beginning of leaf elongation were linked to those of leaf tip appearance, 

and the dates of end of leaf elongation to those of ligule appearance. These dates are 

estimated for each genotype using the genotypic parameters related to plant phenology 

described above (Supplementary Table 1). 

During the period of leaf elongation, the elongation rate of any growing leaf of the plant is 

calculated from that of leaf 6 leading to a profile of leaf elongation rate normalized by the 

maximum rate of leaf 6 (LERa parameter). The distribution of normalized elongation rates 

along leaf ranks is fitted via a beta function with parameters depending on Nfinal 

(Supplementary Table 1). The effects of evaporative demand (VPD) and soil water potential 

(SWP) are applied on the normalized leaf elongation rates, along with genotypic sensitivities 

to VPD (LERb parameter) and to SWP (LERc parameter) (Supplementary Table 1).  

The time course of leaf widening is similar to that of elongation but ending before it (Lacube 

et al., 2017). The profiles of leaf width are also dependent on leaf rank via a beta function with 

parameters related to Nfinal (Supplementary Table 1). The width of individual leaves is 

calculated as a function of two genotypic parameters : a base width of leaf 6 (W6) and a 

sensitivity to intercepted light (rRAD). The latter parameters were fixed for all genotypes in our 

study because their values were not available for considered panels. 

Grain number modelling in Sirius Maize.  

Grain number (GN) was calculated as a logarithmic function of mean plant growth rate ‘PGR’ 

around flowering time (Supplementary Fig. 2), taking into account GNmax (maximum grain 

number per plant), with a minimum PGR (PGRbase) at which grain number starts to increase; 

and a parameter of shape (GNk), the PGR at which 50% of GNmax is reached:  

GN = GNmax × (1 − e−GNk×(PGR−PGRbase))                      (3) 

GNmax was estimated for each hybrid as described before and the shape parameters GNk was 

kept common to all genotypes. PGRbase parameter was also fixed for all hybrids in our study. 

Grain number per square meter was calculated by taking into account the corresponding plant 

density. 
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Simulation tests accuracies.  

We assessed Sirius simulation accuracies for LAI measured by inversion of the PROSAIL model 

(see Chapter 1) and grain number (GN) estimated by dividing grain yield by individual grain 

weight for each hybrid. We calculated Pearson correlations (r) between observed and 

simulated values of the traits and root mean squared error of simulations (rmse), expressed 

as a percentage of mean observed value (rrmse).  
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Supplementary Table. 1 : Synthesis of equations and parameters for phenology 

and leaf area modeling based on Lacube et al., 2020. 
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Supplementary Table. 1 (continued) : Synthesis of equations and parameters for 

phenology and leaf area modeling based on Lacube et al., 2020. 
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Supplementary Fig. 1 : Global overview of the interaction between SiriusQuality2 components. 

Boxes are regular C# projects, circles are BioMa components and the rounded box is a storage 

class. The entry points of the diagram are the Sirius View project and the Sirius Console project.  

Supplementary Fig. 2 : Simulated association between kernel (grain) number  per plant and mean 

plant growth rate (PGR) over a 20-day period bracketing anthesis (filled circles). Lines correspond 

to statistical models fitted to experimental data for different hybrids and years (Messina et al. 

2019). Correlation calculated between simulated and mean observed kernel number (r  =  0.88, 

n = 4). Observed plant growth rate at which kernel number equals 0 is 0.74 ± 0.22 g per plant. 
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(a) 

(e) 

(b) 

(d) (c) 

Supplementary Fig. 3 : Overall correlations between simulated and observed values for LAI (a) and 

grain number
 
(b-f) across genetic progress panel field experiments. In a & b, genotype-dependent 

parameters derived from measured traits. In c, genotype-dependent parameters derived from 

genomic prediction. In d, genotype-dependent parameters derived from genotypes measured traits, 

except maximum grain number (GN
max

) fixed to the mean value of the panel. In e, genotype-

dependent parameters derived from genotypes measured traits, except leaf elongation rate 'LERa' 

fixed to the mean value of the panel. One dot, one hybrid in one experiment. 
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(a) (b) 

(c) (d) 

Supplementary Fig. 4 : Overall correlations between simulated and observed values for LAI (a,b) and 

grain number
 
(c,d) across recent hybrids panel field experiments. In a & c, the genotype-dependent 

parameters FLN, LAR and GN
max

 were derived from measured traits and the other parameters derived 

from genomic prediction. In b & d, all genotype-dependent parameters were estimated via genomic 

prediction. One dot, one hybrid in one experiment. 
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The main objective of my thesis was to develop and evaluate a new approach for predicting 

maize varieties complex field traits (LAI and grain yield) across multiple environments. This 

approach combined statistical genomic prediction models, phenomics methods developed 

recently and a novel crop growth model (Sirius Maize). The originality of this work was to 

combine different methods (quantitative genetics, statistics, phenomics and ecophysiology) 

and to carry out all the necessary steps for developing and testing the approach. These steps 

included : designing and monitoring indoor and multi-site field experiments; collecting and 

analysing phenotypic, genotypic and envirotypic datasets; calculating physiological traits; 

calibrating genomic prediction models; parameterizing the crop growth model and performing 

several simulation tests 

A link between indoor phenotyping and field crop performance 

We provided in this thesis insights for how indoor phenotyping can be linked to crop 

performance in the field. Indeed, indoor phenotyping allowed us to measure at high 

throughput structural and adaptive traits related to plant phenology, architecture, leaf growth 

and its responses to environment. We showed that these traits can be translated in field for 

hundreds of genotypes if three main conditions are met. Firstly, traits measured indoor should 

be heritable and genetically correlated to those in fields, regardless of absolute values. This 

was showed in our study, either when the considered trait was measured with similar 

protocols indoor and in the field (e.g., LAR), when the trait was measured with different 

methods (e.g., architecture traits) or when the trait was more complex (e.g., LAI) and required 

a method involving crop modelling. Secondly, the absolute values of indoor traits should 

translate to that in fields with diverse environmental scenarios, either directly or via crop 

models that take into account differences in environmental conditions. Finally, indoor traits 

need to be predictable with sufficient accuracy from the genomic information of non-

phenotyped genotypes. Here, cross-validation based on a large genetic range panels showed 

good results (with r ranging from 0.56 to 0.84 for the studied traits). These findings open new 

prospects in speed breeding (Watson et al., 2018, 2019; Alahmad et al., 2018; Samantara et 

al., 2022), by allowing screening genetic material for high or low values of adaptive traits, 

conferring either spender or conservative strategies for water use under future climates. 
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Estimation of genotype-dependent parameters of CGMs 

Using crop growth models simulations for defining ideotypes (optimal combinations of 

genotypes x environments x management practices), requires a dialogue between CGMs 

formalisms and phenomic methods for measuring genotype-dependent CGM parameters of 

hundreds of genotypes in phenotyping facilities (Tardieu et al., 2017; Wang et al., 2019; 

Lacube et al., 2020). Despite the long history of CGMs, no common good ways exist for 

choosing genotype-dependent parameters (Onogi, 2022), while CGMs ability to describe 

phenotypic variations depends on these chosen parameters (Yin et al., 2000; Bannayan et al., 

2007). A usual practice to determine genotype-dependent parameters is to adopt knowledge 

garnered from the published literature. In previously reviewed studies using CGMs, the 

number of parameters chosen as genotype-dependent ranged from 3 to 12. Another method 

is to identify parameters that cause large variations in phenotype via sensitivity analyses 

(Quilot et al., 2005), even though genetic aspects are lacking in this procedure. In our study, 

we used 8 traits (leaf appearance rate, final leaf number, max leaf expansion rate, rhPAD 

architecture trait, max stomatal conductance, leaf elongation sensitivity to VPD, leaf 

elongation sensitivity to SWP and max grain number per plant) to estimate 13 genotype-

dependent parameters of Sirius Maize model. These were chosen based on literature 

knowledge about Sirius model processes and for the practical reason of being able to measure 

them at high-throughput. Some of the traits corresponded directly to Sirius parameters; other 

parameters were deduced via simple equations or regressions with measured traits and two 

parameters were scaled to traits.  

In GP-assisted CGM methods, two approaches for genomic prediction of parameters can be 

used: joint or independent (Onogi, 2022). The independent approach is easier to implement, 

but the joint approach can present the advantage that uncertainty in some CGM parameters 

estimation can be compensated by using a joint multi-trait GP, especially when GP training 

data sets are of small size (Onogi, 2020). In our thesis study, we predicted the genotypic 

parameters independently as they were not all acquired from the same experiments, but a 

joint approach can be tested later.  
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A novel GP-assisted CGM method for predicting leaf area index and grain 

number in maize  

A key consideration for successful application of the GP-assisted CGM methodology is the 

availability of a suitable CGM that can be used to incorporate the genetic variation of 

physiological effects and environmental responses for the input traits, that influence the 

genetic variation of a target simulated trait such as yield (Cooper et al., 2016). Ultimately, the 

GP-assisted CGM method can only be as good as the CGM used to represent the genetic 

variation for the target trait. In our study, we benefited from the Sirius Maize CGM derived 

from SiriusQuality2 (Jamieson et al., 1998; Martre et al., 2006). 

Up to now, we were able to parameterize Sirius Maize for tens of varieties and test the 

consistency of our GP-assisted CGM approach for simulating leaf area index and grain number 

yield component, in contrasting environmental conditions. Tests were run in different cases 

assumed to be more or less stringent, including a case where only genomic prediction values 

of all traits/parameters were used in the CGM. Grain number simulation accuracies for the 

genetic progress panel, in the latter case, ranged from 0.63 to 0.80 depending on 

environmental scenarios. These findings were comparable for example with the CGM-assisted 

GP method results of Bustos-Korts et al. (2019), where dynamics of biomass and canopy cover 

for wheat genotypes were simulated using APSIM, then parametric traits were extracted from 

these dynamics and used in a multi-trait GP model for predicting grain yield. Prediction 

accuracies in the latter study ranged from 0.50 to 0.80 depending on environment types. 

Additionally, as a benchmark, our maize GP-assisted CGM results can be compared to 

prediction accuracies obtained for the same maize panels, using a joint regression GP model 

which considers environmental covariates (Millet et al., 2019). 

An advantage of the GP-assisted CGM approach is the inclusion of observed intermediate 

input traits in the CGM, which enables us to consider parameters in the model as 

representations of plant biology. As suggested by Cooper et al. (2016), for approximation, the 

GP-assisted CGM methodology can be viewed as a special case of a broader neural network 

approach (Crossa et al., 2019; Costa-Neto et al., 2021) for extending additive GP methods to 

deal with non-additive effects of the target trait. Both can be represented as a network 

diagram. In the neural network framework, the intermediate nodes would correspond to the 

component physiological traits. In the case of the GP-assisted CGM method, the mapping from 
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SNPs to intermediate nodes to the output trait yield is defined by the CGM instead of 

arbitrarily derived from the data at hand as in the case of the neural network. An important 

difference between the neural network and the CGM is that there are functions in the 

biological network that the neural network method could suppress, while this is not possible 

in a CGM. The fact that the GP-assisted CGM correctly predicts the mean and the range of the 

target trait in the simulated environments while parameterized using data from indoor 

experiments or other field environments, and was sensitive to specified meteorological, soil 

and management data inputs, shows that the physiological and environmental information is 

being used by the CGM in the GP-assisted CGM methodology.  

Use of GP-assisted CGMs remains though a new approach that needs further development 

and benchmark to reach its potential for phenotype prediction and ideotyping. Issues to be 

considered for prediction accuracies levels of the method include : (i) the choice of the CGM; 

(ii) the choice of the genotype-dependent parameters of the CGM, (iii) the accuracy of the 

CGM parameters estimation, (iv) the relationships (or similarities) between target and training 

environments (Onogi, 2022). Moreover, a fundamental assumption for use of CGMs for GEIs 

analyses is that genotype-dependent parameters are assumed to be constant among 

environments and differences of phenotypes of a genotype (i.e., reaction norms) are brought 

about by environmental conditions via the CGMs. However, this assumption does not always 

hold (Lamsal et al., 2018).  

Further upgrades of the thesis GP-assisted CGM method 

The work that remains to be done includes modelling individual grain weight yield component 

with Sirius Maize, which is determined during grain filling phase. This would then enable us to 

simulate grain yield for the same panels and environmental scenarios, as for leaf area index 

and grain number.  

Another upgrade of the model is the use of the parameter PGRbase in grain number calculation.  

PGRbase represents the minimum plant growth rate at which grain number takes values above 

0. In the current work, this parameter was fixed for all genotypes, but is expected to vary 

between genotypes in such a way that the most sensitive hybrids to water deficit for grain 

number would be those with highest sensitivity of leaf growth to water deficit (Welcker et al., 

2011; Turc et al., 2016). This may improve simulation accuracies in water-deficit conditions. 
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Finally, the set of genotype-dependent parameters provided to the CGM and their calculations 

will be optimised, after considering more experiments and genotypes (diversity panel).  

Toward application in breeding or variety recommendation contexts 

Our results can be considered as promising and open new possibilities for tackling the 

genotype by environment interaction and ideotyping, either in a plant breeding or a variety 

recommendation to farmers context. Indeed, our GP-assisted CGM approach may represent 

a new high-throughput tool for evaluating in silico the performance of hundreds of maize 

genotypes in hundreds of environments, given that the required genotype-dependent CGM 

parameters are either measured or predicted from genomic information.  

In commercial maize breeding programs, genomic prediction is now used routinely as an 

integrated component (Cooper et al., 2014, 2021). Combining GP with a CGM into an 

integrated prediction method (GP-assisted CGM) presents interesting opportunities to 

combine crop physiology knowledge and plant breeding to tackle the genetic improvement of 

complex traits such as grain yield, for multiple or specific target scenarios defined as 

combinations of environments and management practices (Cooper et al., 2016, 2023). Crop 

physiology has helped to explain how structural and functional traits variation contribute to 

long term yield gains and has identified putative sources of traits genetic variation that could 

be important for further genetic improvement of yield in drought-prone environments and 

future climates (Welcker et al., 2022; Garcia et al., 2023). Physiologists have advocated the 

use of such traits for screening genetic material in breeding programs. However, few, if any, 

have been scaled and routinely adopted by breeders as integrated components of their 

breeding programs (Cooper et al., 2016). The GP-assisted CGM methodology provides an 

opportunity to overcome some of the limitations that are associated with developing and 

applying additional physiological traits screening within a breeding program (Hammer et al., 

2006). The cost and effort involved in developing an appropriate CGM for specific breeding 

program objectives has to be weighed against the importance of GEIs and other sources of 

non-additive variations of the target trait (Cooper et al., 2016).  

For the variety recommendation context, there is an increasing demand from farmers to have 

access to integrative decision support tools that can help in their decisions regarding cropping 

and field management practices, including variety choice. This demand is rising especially in 
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the context of more fluctuating environmental conditions due to climate change, increasing 

frequency of heat and drought waves, in addition to agriculture policies supporting inputs 

reduction. As a complement to information produced for farmers based on classical multi-

annual trials networks performed by applied research organisms (such as ARVALIS), the GP-

assisted CGM in silico method may represent a valuable additional tool for enhancing 

recommendation to farmers, mainly by testing in silico multiple combinations of varieties, 

field environmental conditions and management practices. 
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ANNEXE EN FRANÇAIS 

Thèse de Jugurta BOUIDGHAGHEN (2020-2023):  

Prédiction de la performance de variétés de maïs en conditions 

environnementales contrastées par combinaison de phénomique, 

prédiction génomique et modèle de culture 

Objectifs de la thèse 

L'objectif de la thèse est de développer et d'évaluer une méthode pour prédire le rendement 

d'un grand nombre de variétés de maïs dans des environnements multiples, en utilisant les 

connaissances scientifiques accumulées sur la réponse aux conditions environnementales. 

Pour atteindre cet objectif, nous avons combiné des modèles de prédiction génomique, de 

nouvelles approches phénomiques et un modèle de culture (Sirius Maize). Cette méthode a, 

potentiellement, la capacité d’aboutir à un nouvel outil efficace pour simuler la performance 

de centaines de génotypes de maïs dans des centaines d'environnements, que ce soit dans le 

contexte de l’amélioration ou l’évaluation variétale pour les agriculteurs. Cette thèse a été 

réalisée en partenariat avec ARVALIS, un organisme de recherche appliquée pour les 

agriculteurs en France, spécialisé dans les grandes cultures, dont notamment les céréales à 

paille et le maïs. Sa mission principale est de proposer des solutions agronomiques efficaces 

dans une multiplicité des scénarios. Cela inclut le choix variétal et les pratiques culturales, ainsi 

que des solutions économiques, environnementales et sanitaires, qui sont ensuite 

communiquées aux agriculteurs, pour les aider à faire face aux défis actuels tels que le 

changement climatique, les demandes sociétales et les exigences commerciales du marché. 

La première étape de notre étude avait pour objectif d'analyser les caractères mesurés lors 

d'expériences menées en plateforme de phénotypage haut-débit sous serre. Trois panels 

d'hybrides de maïs ont été analysés pour cela : un "panel de diversité" avec 246 hybrides 

(Millet et al., 2019), un "panel progrès génétique" composé d’une série historique de 56 

hybrides commerciaux (Welcker et al., 2022) et un "panel d'hybrides récents" comprenant 86 

hybrides commercialisés entre 2008 et 2020 (la plupart des mesures en plateforme ayant été 

effectuées sur seulement 20 hybrides contrastés, pour ce dernier panel). Nous avons montré 
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que les valeurs génotypiques des caractères mesurés en plateforme sous serre étaient 

corrélées avec les valeurs au champ, soit directement, soit par le biais de modèles 

écophysiologiques simples. Nous avons ensuite examiné si les mesures des caractères 

effectuées en plateforme peuvent servir à entraîner des modèles de prédiction qui estiment 

les valeurs génotypiques des caractères sur la base des informations génomiques (génotypage 

SNP 600k) uniquement. 

L’objectif de l’étape suivante était d'analyser l'ensemble des données collectées dans le cadre 

d’un réseau d’essais multi-site pour le panel d'hybrides récents. Nous avons inclus ici les 

données au champ collectées dans le cadre du projet européen INVITE sur un sous-ensemble 

de 30 variétés du panel d'hybrides récents. Il s'agit de 33 essais, définis comme des 

combinaisons de site x année x conduite, répartis à travers l'Europe, en conduites pluviales et 

irriguées. Nous avons caractérisé les conditions environnementales subies par les plantes dans 

chaque champ à l'aide de capteurs météorologiques et de capteurs tensiométriques du sol. 

Nous avons estimé des indices environnementaux et assigné les essais à des scénarios 

rencontrés en maïsiculture à l’échelle européenne. Nous avons également calculé un 

caractère qui est un paramètre essentiel du le modèle Sirius Maize, à savoir le nombre 

maximal de grains par plante de l’hybride considéré. Nous avons aussi analysé l'indice foliaire 

(LAI) dans des essais contrastés, dérivé d’imagerie par drone et l'inversion du modèle 

‘PROSAIL’ (Berger et al., 2018 ; Blancon et al., 2019). Enfin, nous avons estimé les sensibilités 

génotypiques du nombre de grains au potentiel hydrique du sol et aux températures 

maximales pendant la phase de floraison à l'aide d'un modèle de régression linéaire. 

L’objectif de la dernière étape était de tester l’efficacité de notre approche, qui vise à simuler 

la performance de centaines de génotypes dans des centaines d’environnements en 

combinant la phénomique, la prédiction génomique et la modélisation des cultures. La 

spécificité ici était de réaliser des simulations basées sur un modèle de culture dont les 

paramètres génotype-dépendants proviennent des caractères présentés dans les étapes 

précédentes. Toutefois, par contrainte de temps, notre étude s'est limitée à la première partie 

du cycle cultural du maïs, avec des simulations effectuées pour l'indice de surface foliaire et 

le nombre de grains pour des dizaines de variétés dans des conditions environnementales 

contrastées. Nous avons utilisé pour cela le modèle de culture 'Sirius Maize'.  
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Principaux résultats 

Les caractères adaptatifs du maïs mesurés en plateforme sous serre peuvent 

être inférés dans différents champs et prédits par des modèles de prédiction 

génomique. 

Plusieurs caractères ont été analysés dans la thèse, liés à la phénologie (vitesse d’apparition 

des feuilles et durée de phase végétative), à l'architecture des plantes (rhPAD) ou à la croissance 

foliaire (vitesse d’expansion foliaire, LAI). Des corrélations étroites ont été observées entre les 

valeurs génotypiques des caractères mesurés en plateforme de phénotypage sous serre et 

dans des essais multi-sites au champ. C'était le cas lorsque le caractère considéré était mesuré 

avec des protocoles similaires sous serre et au champ, par exemple la vitesse d’apparition des 

feuilles ou la durée de la phase végétative. C'était également le cas lorsque le caractère était 

mesuré à l'aide de méthodes différentes, comme dans le cas de l'architecture des plantes. 

Enfin, l’indice foliaire, qui dépend fortement de la densité des plantes et des conditions 

environnementales dans le couvert considéré, a nécessité une méthode impliquant la 

modélisation de la culture. Les corrélations observées dans ces trois cas entre plateforme sous 

serre et champs allaient de 0,57 à 0,77. 

Les valeurs des caractères ont été transposées des conditions sous serre à une diversité de 

champs, quand les différences de conditions environnementales ont été prises en compte par 

le biais d'un modèle. La modélisation des effets de la température a permis par exemple 

d'assurer la correspondance des valeurs entre les essais au champ et en plateforme sous serre 

pour la vitesse d'apparition des feuilles et la durée de la phase végétative. La quantité de 

lumière interceptée était également nécessaire pour que d'autres caractères soient cohérents 

entre les expériences. C'était le cas ici pour la largeur des feuilles de maïs mesurée en 

plateforme sous serre et dans plusieurs champs. L'état hydrique de la plante était, en outre, 

nécessaire dans certains cas pour tenir compte des différences dans les caractères liés à la 

croissance des organes. C'était le cas ici pour la longueur des feuilles en fonction de la 

demande évaporative (VPD de l'air). La vitesse d’élongation des feuilles était étroitement liée 

à une combinaison du potentiel hydrique du sol et du déficit de saturation de l’air.  

Enfin, la prédiction génomique menée par validation croisée sur les panels de diversité et 

progrès génétique ont donné de bons résultats avec des coefficients de corrélation entre 
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valeurs observées et prédites allant de 0,56 à 0,84 pour les caractères étudiés. La validation 

externe sur le panel de variétés hybrides récentes a fourni des résultats moins précis, mais les 

corrélations entre les valeurs prédites et observées étaient toutefois majoritairement 

significatives, allant de 0,34 à 0,71.  

Le modèle ‘Sirius Maize’, paramétré avec des valeurs de caractères mesurées 

ou prédites par prédiction génomique, a permis de simuler l’indice foliaire et 

le nombre de grains avec une bonne qualité prédictive, pour un large nombre 

d’hybrides dans des conditions environnementales contrastées.  

Nous avons testé le modèle ‘Sirius Maize’ avec les données du panel progrès génétique, pour 

lequel tous les paramètres génotypiques proviennent de mesures.  

Pour l’indice foliaire, les valeurs prédites ont été comparées avec des valeurs dérivées 

d'images multi-spectrales de drone à la fin de la phase végétative. Les simulations ont été 

réalisées pour deux essais au champ : MAU2017W (conditions hydriques favorables ‘WW’) et 

MAU2017D (déficit hydrique ‘WD’). La corrélation entre les valeurs observées et simulées 

dans l’essai ‘MAU2017W’ était élevée (r=0,64). La corrélation a diminué à r=0,40 en déficit 

hydrique, pour l’essai ‘MAU2017D’, mais elle est restée significative, avec une erreur 

d’estimation légèrement plus importante. 

Pour le nombre de grains par unité de surface, les simulations ont été réalisées pour neuf 

essais au champ: LEM2017W et VEN2017W (scénario cool_WW) ; GAI2017W et NER2013W 

(scénario warm_WW) ; MAU2017W (scénario hot_WW) ; VEN2017D (scénario cool_WD) ; 

GAI2017D et LAV2017D (scénario warm_WD) ; MAU2010D (scénario hot_WD). Les 

corrélations entre le nombre de grains observé et simulé étaient élevées dans tous les 

scénarios, allant de r=0,79 à r=0,86 dans des conditions hydriques favorables avec une faible 

erreur d'estimation (rrmse=15% en moyenne), et allant de r=0,71 à r=0,87 dans des conditions 

de déficit hydrique avec une erreur d'estimation fluctuante (rrmse=23%  ̶47%). 

Nous avons aussi testé le modèle de culture lorsque tous ses paramètres génotype-

dépendants sont estimés par prédiction génomique pour le panel progrès génétique. Les 

valeurs génétiques des caractères utilisées ici pour la paramétrisation ont été obtenues à 

partir des schémas de validation croisée évoqués précédemment. Les corrélations entre les 

valeurs observées et simulées d’indice foliaire pour le panel sont restées similaires à celles 

obtenues lorsque les paramètres sont dérivés de mesures, aussi bien dans les conditions 
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hydriques favorables (r=0,63) qu’en déficit hydrique (r=0,41). Pour le nombre de grains, les 

corrélations entre les valeurs observées et simulées ont diminué de 10 % en moyenne pour le 

panel, par rapport à celles des simulations effectuées avec des valeurs des paramètres 

génotypiques mesurées. C'était le cas dans les conditions hydriques favorables (r=0,68 ̶ 0,79, 

rrmse=12%  ̶19%) et dans les conditions de déficit hydrique (r=0,63  ̶0,80, rrmse=22% ̶ 51%).  

Discussion générale et conclusion 

L'originalité de cette thèse a été de combiner différentes méthodes (génétique quantitative, 

statistiques, phénomique et écophysiologie) et de réaliser toutes les étapes nécessaires pour 

développer et tester une nouvelle approche prédictive des caractères au champ. Ces étapes 

comprenaient : la conception et le suivi d'expériences en plateforme de phénotypage sous 

serre et sur plusieurs sites au champ; la collecte et l'analyse d'ensembles de données 

phénotypiques, génotypiques et environnementales ; le calcul de caractères physiologiques ; 

la calibration de modèles de prédiction génomique ; le paramétrage de modèle de culture et 

la réalisation de plusieurs tests de simulation.  

Un lien entre le phénotypage en plateforme sous serre et la performance des 

cultures au champ. 

Dans cette thèse, nous avons montré comment le phénotypage en plateforme sous serre peut 

permettre d’évaluer la performance des cultures au champ. En effet, le phénotypage sous 

serre nous a permis de mesurer à haut débit des caractères liés à la phénologie de la plante, 

à son architecture, à la croissance des feuilles et à ses réponses à l'environnement. Nous avons 

montré que ces caractères peuvent être inférés au champ pour des centaines de génotypes si 

trois conditions principales sont remplies. Premièrement, les caractères mesurés en 

plateforme doivent être génétiquement corrélés à ceux au champ (indépendamment des 

valeurs absolues), de sorte que la sélection des génotypes en plateforme soit pertinente pour 

les conditions du champ. Deuxièmement, la valeur absolue des caractères mesurés en 

plateforme doit correspondre à celle des caractères mesurés au champ dans divers scénarios 

environnementaux, soit directement, soit par l'intermédiaire de modèles. Enfin, les caractères 

de plateforme doivent être prédits avec suffisamment de précision à partir des informations 

génomiques des génotypes non phénotypés. Ces résultats ouvrent de nouvelles perspectives 
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en matière en sélection rapide (Watson et al., 2018, 2019), en permettant de cribler le 

matériel génétique pour des valeurs élevées ou faibles de caractères adaptatifs, conférant des 

stratégies soit dépensières soit conservatrices pour l'utilisation de l'eau sous les futurs climats. 

Estimation des paramètres génotype-dépendants des modèles de culture. 

L'utilisation de modèles de culture pour définir des idéotypes (combinaisons optimales de 

génotypes x environnements x pratiques culturales) nécessite un dialogue entre les 

formalismes des modèles de culture et les méthodes phénomiques pour mesurer les 

paramètres génotype-dépendants de centaines de génotypes dans les plateformes de 

phénotypage (Tardieu et al., 2017 ; Lacube et al., 2020). Malgré la longue histoire des modèles 

de culture, il n'existe pas de bonnes méthodes pour choisir les paramètres dépendants du 

génotype (Onogi, 2022), alors que la capacité de ces modèles à décrire les variations 

phénotypiques dépend de ces paramètres. Une pratique habituelle pour déterminer les 

paramètres dépendants du génotype consiste à adopter les connaissances tirées de la 

littérature. Dans les études publiées utilisant les modèles de culture combinés à la prédiction 

génomique, le nombre de paramètres choisis comme dépendants du génotype variait de 3 à 

12. Une autre méthode consiste à identifier les paramètres qui causent de grandes variations 

dans le phénotype via des analyses de sensibilité (Quilot et al., 2005), même si les aspects 

génétiques sont absents dans cette procédure. Dans notre étude, nous avons utilisé huit 

caractères (la vitesse d'apparition des feuilles, le nombre final de feuilles, la vitesse 

d'expansion foliaire, un caractère d'architecture rhPAD, la conductance stomatique maximale, 

la sensibilité de l'élongation foliaire au VPD et au potentiel hydrique du sol, et le nombre 

maximal de grains par plante) pour estimer treize paramètres dépendants du génotype du 

modèle ‘Sirius Maize’.  

Une nouvelle méthode combinant modèle de culture et prédiction génomique 

pour prédire l'indice foliaire et le nombre de grains chez le maïs. 

Une considération essentielle pour une application réussie de la méthodologie développée 

dans la thèse est la disponibilité d'un modèle de culture approprié, qui peut être utilisé pour 

incorporer la variabilité génétique de caractères physiologiques clés et la répercuter sur la 

variation génétique d’un caractère complexe simulé comme le rendement. Dans notre étude, 
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nous avons bénéficié du modèle de culture ‘Sirius Maize’ développé au LEPSE à partir de 

SiriusQuality2 (Jamieson et al., 1998 ; Martre et al., 2006). 

Dans cette thèse, nous avons paramétré Sirius Maize pour des dizaines de variétés et testé 

l’efficacité de notre approche, combinant modèle de culture et prédiction génomique, pour 

simuler l'indice foliaire et la composante de rendement ‘nombre de grains’, dans des 

conditions environnementales contrastées. Les tests ont été effectués dans différents cas plus 

ou moins stringents, y compris un cas où seules les valeurs de prédiction génomique de tous 

les caractères/paramètres étaient utilisées dans le modèle de culture. Dans ce dernier cas, les 

précisions de simulation (r) du nombre de grains pour le panel progrès génétique allaient de 

0,63 à 0,80 en fonction des scénarios environnementaux. Ces résultats sont comparables, par 

exemple, à ceux de l’étude Bustos-Korts et al. (2019), où la dynamique de la biomasse et du 

couvert végétal pour des génotypes de blé a été simulée à l'aide du modèle de culture ‘APSIM’, 

puis des paramètres ont été extraits de ces dynamiques et utilisés dans un modèle de 

prédiction génomique multi-caractères pour prédire le rendement. Dans cette étude, les 

précisions de prédiction allaient de 0,50 à 0,80 en fonction des types d'environnement. 

Un avantage de l'approche de la thèse est l'inclusion de caractères intermédiaires observés 

dans un modèle de culture, ce qui nous permet de considérer les paramètres du modèle 

comme des représentations de la biologie de la plante. Comme le suggèrent Cooper et al. 

(2016), la méthodologie combinant modèle de culture et prédiction génomique peut être 

considérée comme un cas particulier d'une approche d’apprentissage profond de type ‘réseau 

de neurones’ (Crossa et al., 2019 ; Costa-Neto et al., 2021), qui tient compte des effets non 

additifs sur le caractère prédit. Dans le cadre du réseau de neurones, les nœuds intermédiaires 

correspondraient aux caractères physiologiques considérés. Dans le cas de la méthode de la 

thèse, la correspondance entre les SNPs, les nœuds intermédiaires et le caractère simulé est 

définie par le modèle de culture, au lieu d'être dérivée arbitrairement des données 

d’entrainement comme dans le cas du réseau de neurones.  

L'utilisation de méthodes combinant modèle de culture et prédiction génomique nécessite 

encore un développement plus poussé et une évaluation comparative pour atteindre son 

potentiel en matière de prédiction du phénotypes et d'idéotypage. Les questions à prendre 

en compte pour améliorer les niveaux de précision de prédiction comprennent : i) le choix du 

modèle de culture ; ii) le choix des paramètres génotype-dépendants du modèle, iii) la 
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précision de l'estimation de ces paramètres, iv) les relations (ou similitudes) entre 

l'environnement cible et l'environnement d'entraînement (Onogi, 2022).  

Perspectives concernant la méthode de la thèse. 

Le travail prévu pour compléter les résultats de la thèse, comprend la modélisation de la 

composante du rendement ‘poids du grain’ avec Sirius Maize, qui est déterminée pendant la 

phase de remplissage chez le maïs. Cela nous permettrait de simuler le rendement en grains 

pour les mêmes panels et scénarios environnementaux que pour l'indice foliaire et le nombre 

de grains. Une autre amélioration du modèle sera l'utilisation du paramètre PGRbase dans le 

calcul du nombre de grains. Dans le présent travail, ce paramètre a été fixé pour tous les 

génotypes, mais on s'attend à ce qu'il varie entre les génotypes de telle sorte que les hybrides 

les plus sensibles au déficit hydrique pour le nombre de grains seraient ceux dont la croissance 

foliaire est la plus sensible au déficit hydrique aussi (Welcker et al., 2011 ; Turc et al., 2016). 

Cela pourrait améliorer la précision des simulations dans des conditions de déficit hydrique. 

Enfin, l'ensemble des paramètres dépendants du génotype fournis au modèle de culture et 

leurs calculs seront optimisés après avoir pris en compte davantage d'expériences et de 

génotypes (panel de diversité). 

Vers une application dans des contextes de sélection ou de recommandation 

variétale. 

Dans les programmes de sélection du maïs, la prédiction génomique est désormais 

couramment utilisée en tant que composante intégrée (Cooper et al., 2014, 2021). La 

combinaison de la prédiction génomique avec un modèle de culture dans une méthode de 

prédiction intégrée offre des possibilités intéressantes pour l'amélioration génétique de 

caractères complexes tels que le rendement en grains, pour des scénarios multiples ou 

spécifiques définis comme des combinaisons d'environnements et de pratiques culturales. Le 

coût et les efforts nécessaires à l’établissement d'un modèle de culture approprié pour des 

objectifs spécifiques d’un programme de sélection doivent être mis en balance avec 

l'importance des interactions génotype x environnement et d'autres sources de variation non 

additives du caractère d’intérêt ciblé (Cooper et al., 2016). 
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En ce qui concerne la recommandation des variétés, les agriculteurs sont de plus en plus 

nombreux à souhaiter avoir accès à des outils d'aide à la décision qui peuvent les aider à choisir 

les variétés à cultiver conjointement aux itinéraires techniques. Cette demande augmente 

surtout dans le contexte de conditions environnementales plus fluctuantes dues au 

changement climatique, à la fréquence accrue des vagues de chaleur et de sécheresse, ainsi 

qu'aux politiques agricoles favorisant la réduction des intrants. En complément des 

informations produites pour les agriculteurs sur la base des réseaux d'essais pluriannuels 

réalisés par les organismes de recherche appliquée (tels qu'ARVALIS), l’approche de 

simulation de la thèse peut représenter un outil supplémentaire précieux pour améliorer les 

recommandations faites aux agriculteurs, principalement en testant in silico de multiples 

combinaisons de variétés, de conditions environnementales et de pratiques culturales. 
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